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Abstract—The Liu—Cuff-Verdi lemma states that in estimating
a source X from an observation Y, making a random guess X’
from the posterior p(z|y) can go wrong at most twice as often as
the optimal answer. Several variations of this fundamental, yet
rather arcane, result are explored for detection, decoding, and
estimation problems.

I. INTRODUCTION

Optimal detection is one of the most fundamental problems
in statistical signal processing. Suppose that a discrete signal
X € X is to be estimated from a noisy observation Y.
Which estimate X = 7(Y") minimizes the probability of error
P, = P{X # X}? The same problem arises for optimal
decision making or optimal decoding of error correcting codes.
For example, a student is taking a multiple-choice test and has
to make a decision on which answer to select from A, B, C,
and D. When the conditional probability (or the posterior in
the Bayesian parlance) p(z|y) of the signal (the true answer)
given the observation (the student’s understanding of the
question) is known, then the answer to the optimal detection
problem is straightforward. One should simply choose Z(y)
that maximizes the posterior p(z|y) for each realization y of
the observation Y. This optimal detector

& (y) = arg glea?p(x\y) (1
is often referred to as the maximum a posterior probability
(MAP) detector, with ties in the maximum (if any) broken in
an arbitrary way. No other detector can achieve the probability
of error smaller than the minimum

P:=P{X #i°(V))

achieved by the MAP detector. If the answer to the question
is A with probability 10%, B with probability 20%, C with
probability 30%, and D with probability 40%, then the student
should choose D to minimize the probability of error as 60%.
Now what happens if one succumbs to a sudden whim
and instead makes a random choice according to the posterior
probability, say, (.1,.2,.3,.4)? The following observation by
Jingbo Liu, which was related to one of the authors by his
then Ph.D. advisor Paul Cuff during the 2015 IEEE ISIT in
Hong Kong, asserts that a randomly generated answer from the
posterior is not too far off from the optimal MAP decision.

Liu-Cuff-Verdd lemma (published in [1]). Let X' be a
conditionally independent and identically distributed (i.i.d.)
copy of X given'Y, i.e., X'{Y =y} ~ p(z|y). Then

P <P{X # X'} <2P?.

We prove the Liu—Cuff-Verdd (LCV) lemma through the
following abstraction.

Lemma 1. Ler d: X x X — [0,00) be a metric defined over
an alphabet X. Let X and X' be i.i.d. random variables on
X. Then

Eld(X, X")] <2 Inf E[d(X, 2)]. 2)
In particular,
P{X # X'} <2 inf P{X #2}. 3)
Proof: Since
d(z,z") < d(z,2") +d(«',2")
for any x,2’, 2", and X and X’ are identically distributed,
E[d(X, X")] < E[d(X, )] + E[d(X',z)] = 2E[d(X, )]

for any x € X. Taking infimum over x € X on both sides
establishes (2), which can be specialized with the Hamming
distortion d(z,a’") = 1{x # 2’} to establish (3). |

Proof of the LCV lemma: The lower bound follows
trivially. By the conditional version of Lemma 1, since X
and X'’ are conditionally i.i.d.,

PIX # XY =y} <2 inf P{X # 2|V =y}
S

=2P{X # 2" (y)[Y = y}.

Taking expectation with respect to (w.r.t.) Y on both sides
establishes the upper bound. ]

The LCV lemma takes its root in the classical result by
Cover and Hart [2], which shows that the error probability
of the nearest-neighbor classifier is at most twice the Bayes
optimal error probability in the sample limit. In the context
of optimal decoding in communication, the paper [1] by Liu,
Cuff, and Verdd seems to be the first in the literature to point
out the factor-of-two bound on the error probability of the
randomized likelihood decoder. The Cover—Hart analysis of
multilabel nearest-neighbor classification can be applied to
strengthen the LCV lemma as follows.

Variation 1. If |X| is finite, then
e
PP<P{X#X'} < 2P:(1 - ————P.
‘ ‘ 2(lxf=1) °

Beyond the power of random guesses in a test, Liu—Cuff—
Verdd lemma has the following implications on standard signal
processing and communication problems.



Example 1 (Array signal processing). Consider the optimal
detection problem in a multiple-input multiple-output (MIMO)
system with input X and the output

Y = HX + Z,

where Z ~ N(0,1,) and H € R™*™, Typically x takes
values from a subset of a lattice and optimal detection reduces
to integer least-squares (ILS) problem [3]. Sphere decoding
(see, for example, [4], [5]) is an efficient algorithm for the
ILS problem, but when n is large, its complexity is still
prohibitively high. To overcome this difficulty, several low-
complexity alternative methods [6], [7] has been proposed
based on Markov chain Monte Carlo (MCMC) sampling. The
LCV lemma provides theoretical performance guarantee for
these algorithms (even with a single sample). Even when
the sample is drawn from an approximate distribution ¢(z|y)
instead of the true posterior p(x|y), we have

P{X # X'} < 2P7 + 2E[drv(p(2]Y), q(2]Y))].

Example 2 (Channel coding). The LCV lemma is also appli-
cable to the point-to-point communication problem in which a
k-bit message M = (M7, ..., M}) is encoded into a codeword
2(M) and transmitted over a communication channel p(y|x).
If M is drawn uniformly at random, the optimal MAP decoder
is equivalent to the maximum likelihood (ML) decoder

m’(y) = arg max p(y|(m)).

In their award-winning paper, Yassaee, Gohari, and Aref [8]
proposed the (randomized) likelihood decoder that generates
a sample M’ from the posterior p(ml|y) as a proof device
for nonasymptotic coding theorems in information theory. A
dual technique of likelihood encoding was also used for lossy
source coding [9]. The LCV lemma shows that there is more
to the likelihood decoder. On the theoretical side, as pointed
out in [1], The LCV lemma provides elementary and much
stronger proofs for the existing analyses [10], [11] of the
performance of the likelihood decoder (such as its achiev-
able error exponent). On the practical side, the LCV lemma
provides theoretical justifications for heuristic approaches to
decoding of LDPC codes explored by Neal [12], and Mezard
and Montanari [13] based on MCMC methods (see also [14]).
Lemma 1 can be also applied immediately to the bit-error rate
(BER)

k
1
Cl(l’n7 m') = T Z ]l{mi;ém;}.
i=1

Hence, the same likelihood decoder M’ ~ p(m|y) also enjoys
the factor-of-two performance guarantee from the minimum
BER of the optimal bit ML decoder. Note that if M/ ~
%, then P{M/, # M} monotonically decreases for
o > 1 and approaches P as o — oo [1, Theorem 3], and
hence that the exponentiated likelihood decoder M, also has

the factor-of-two performance guarantee for oo > 1 (cf. [15]).

Motivated by these examples, this paper explores other im-
plications of posterior sampling in statistical signal processing.

Our development traverses two different directions. As with
the performance guarantee of posterior sampling for block and
bit error rates, we show that a single sample from the posterior
has a similar factor-of-two performance guarantee for optimal
estimation under mean absolute and square error criteria in
Section III. Following the empirical mode decoder in [13], we
also investigate the case in which multiple samples are drawn
from the posterior. For each of optimal detection/decoding,
minimum mean absolute error (MMAE) estimation, and min-
imum mean square error (MMSE) estimation, we show that
the factor of two can be improved essentially to the factor of
one in the sample limit. Due to the space limitation, proofs of
some technical results will be omitted.
II. DETECTION BASED ON MULTIPLE SAMPLES
A. MAP Among the Samples
Let
S={X/, X}, ... X\

be a set of random samples from the posterior p(x|y), that is,
Xi,..., X}y are conditionally i.i.d. copies of X given Y. Let
Xy = 4

N = argmaxp(z|y) )

be the maximum a posteriori probability sample among the N
random samples in S. As in the MAP detector in (1), ties are
broken in an arbitrary way as before. When N = 1, this MAP-
among-the-samples detector reduces to X’ in Liu—Cuff—Verdd
lemma. When |X| is finite, then S would ultimately converge
to X as N — oo, and consequently P{X # Xy} should
converge to the minimum error probability P..

The following result shows that the convergence is essen-
tially exponential, even for a countably infinite alphabet X'

Variation 2. Ler q;(y) := max{p(x|y): x € X} and
(8) = P{as(V) < 6} )
Then, for any § > 0,
P{X # Xy} < P +e N +¢(0)

In particular, if essinf,cy q1(y) > 0, P{X # X} converges
to P} exponentially in N.

Our proof uses the following.
Lemma 2. Let
X*(y) ={z € X: p(zly) = a1 (y)}-
Then, for every y € Y
P{Xn ¢ X" (y)|Y =y} < e 0N ©)
Proof: We have X ¢ X*(y) if and only if X! ¢ X*(y)
for all ¢ € [N]. Thus

P{Xy ¢ X" W)Y =y} = 1~ 1X* W)lar(v)™
< e 1M Wlan@N

where the inequality follows since In z < z— 1. Finally, noting
that |X*(y)| > 1 establishes (6). |



Proof of Variation 2: Assume without loss of generality
that the MAP detector in (1) breaks ties uniformly at random
and denote this (random) optimal detector as X*. For each
symbol z € X, define

Eo(z) ={y: = ¢ X" (y)},
Ey(z) ={y: z € X*(y), |X"(y)| = k},
Then, for any = and y,

P{X #X*|Y =y, X =}

=P{X" #2|Y =y}
|X] .

=Liyemo@)y + Z P{X* #z|Y = y}ﬂ{yEEk(z)}
k=1
|X] 1

= LiyeBo@n + )~
k=1

keN.

Liyepi(a)y- 7

Now for any detector X ~ (not necessarily the one in (4)),

P{X # Xn|Y =y, X ==}
X
k=0
x|
k—1
< Lyemy(a)} + Z Liyemi(2))
X
+> 7 PN ¢ WY =y} yem o)) ®)
k=1

SPIX#XY =y} +P{An ¢ X ()Y =9} 9
To justify (8), suppose that y € Ej(x) for k > 1. Then,
P{Xn € X" ()Y =y} = kP{Xy = 2|V =y},
which implies
k—1

PLXy £ =y} =+ + PRk ¢ X° ()Y = ).

Also, (9) follows by recalling (7) and replacing 1/k with 1
in (8). Taking expectation on both sides of (9), and using
Lemma 2 and (5), we have the desired result. [ |

B. Empirical Mode

The MAP-among-the-samples detector in (4) involves evalu-
ating the posterior (or some monotonically increasing function
of it) for the random samples. A simpler approach is to make a
decision based on the empirical distribution of (X1,..., X})

and take the empirical mode
Xy = mode(X}, X5, ..., XN,

which is the most frequent symbol among the samples. It is
natural to expect that with more random samples, we would
achieve a smaller error probability.

Variation 3.

P{X # X3} < csP* and P{X # X5} < 5P},

where
c3 = max (1 + 3p — 5p? + 2p°®) ~ 1.528,
p€l0,1]

c5 = max (1 + 10p* — 25p° + 21p* — 6p

%) ~ 1.501.
p€e[0,1]

The proof is omitted. This distribution-free result is not
readily scalable with large N. With some regularity conditions
on the posterior, however, we can establish the following.

Variation 4. Let

¢1(y) == max{p(z|y): x € X},
g2(y) = max{p(z|y): v € X\X"(y)},
where X*(y) = {x € X: p(z|ly) = q1(y)}. Let

A(y) = q1(y) — a2(y)

and

€(9) = P{A(Y) < 4}

Then, for any § > 0,

(10)

P{X # Xy} < P* +min{(|X]| — 1)(e~ "= + €(4)),
8(N + 1)(e~ T + ¢(5))}.

In particular, if essinf,cy A(y) > 0, P{X # XN} converges
to P} exponentially in N.

The proof of Variation 4 follows exactly as that of Varia-
tion 2, with the use of the following lemma.

Lemma 3. For every y € ),

5 « . _AZyN
P{Xy ¢ X" (y)|Y =y} < min{(|X| —1)e” >
2,
(N + 1)~ 15},
Proof: For simplicity of notation, we drop the dependence
on y. Suppose that k = |X*| < oo. Let 7w(z[z'V) =

Zi]\il L{s=zy be the number of occurrences of z in the

sequence z'"V. Assume without loss of generality that 1 € X*.
Then
P{Xy ¢ X"} =) P{Xy=uz}
cgX*
< Y P{r(@|XN) > w(2’ | XN), 2’ € A%}
g X*
< Y P{m(z|XN) > 7(1]X"N)}
g X*
N
=2 P {Z Lixi=ay = L=y 2 0}
g X* =1
N
- S e{yzzal
egx+  \i=1
where
1 wp. p(x),
Zgi=1ix1=} — Lix;=1y = { —1 wp. p(1)



Clearly, E[Z, ;] = p(z)—p(1) < 0 for z ¢ X* by assumption.
Since (Z,;)N, are i.i.d. and bounded random variables, by
Hoeffding’s inequality we have for each x ¢ X™*

N
P {Z Zypi > 0}
=1 v
<P {Z Zyi — N(p(z) —p(1)) = N(p(1) — p(x))}
i=1
S <_ LS p(xWN) |
Finally, by the union bound,

. i D) — pla))?2
Pln g} < S exp (—WN)
g X*
2
< (M — k) exp (_(fhzqz)N)
The case for |X| = oo can be handled by the Vapnik—

Chervonenkis (VC) theory [16]. First note that the event
{Xn ¢ X*} is included in the event
S A
5 (-

Also, the N-th shatter coefficient of {{z}: = € N} becomes
N + 1 by definition. Hence, by the VC theorem, we have

A {sup (e XY) — pla)

zEN

P(Xn ¢ X*) < P(A) < 8(N 4 1)e NA™/128,
which completes the proof. [ |

III. ESTIMATION FROM POSTERIOR SAMPLING

We now consider the problem of estimating a signal X from
its noisy observation Y under a specified distortion function
d: X x X — [0,00). As in Sections I and II, we discuss the
performance of the posterior sampling estimator X’ ~ f(z|y)
compared to the optimal estimator

&*(y) = inf E[d(X,2(y))|Y = y].

A. Absolute Loss

Suppose that the distortion function is the absolute loss, i.e.,
d(xz,%) = |z — &|. Given {Y = y}, the optimal estimator is
the median

F(y) = ir;f{x: F(z|y) > 1/2}.

of the posterior cumulative distribution function (cdf) F(x|y).
Let X’ be a conditionally i.i.d. copy of X. Since the absolute
loss is a metric, Lemma 1 implies the following.
Variation 5.

E[|X — 2" (V)] < E[|X — X' < 2E[|X —2"(Y)[]. (D)

In words, posterior sampling has the factor-of-two perfor-
mance guarantee from the MMAE estimate.

We now consider taking multiple samples X7, X/, ...
from the posterior f(x|y). Define the empirical cdf

N

A 1

Fy(z|y) = N E ix, (y)<a}
1=1

and take . .
Xy =inf{z: Fy(x|y) > 1/2}.

to be the empirical median.
The following result compares the expected loss of this
posterior sampling estimator to the MMAE.

Variation 6. Suppose that | X| < B < oo almost surely and
that the posterior cdf F(x|y) satisfies

[F(2"(y) + aly) —1/2| = Llal,

for everyy € Y and o € (—r,r) for some L,r > 0. Then, for
any € > 0,

E[|X — Xn|] SE[|X - 2*(Y)|] + ¢ + 4Be 2L (AN,

To prove this result, we first argue the convergence in
probability via the following lemma.

Lemma 4. Under the condition of Variation 6, for any € > 0,
P {|XN _ )| > e‘Y - y} < 9 2PN
Proof: Let € > 0 and define 6 := e Ar. If

sup |F(z|y) — Fn(z|y)| < L, (12)

then

. PN 1 -
F(Xnly) > Fn(Xnly) = L0 = 5 = Lo > F(i(y) — d]y),
where the last inequality is due to the assumption on F'(z[y).
It follows that Xy > 2*(y)—J since F'(z|y)) is nondecreasing

in z. Following a similar argument, (12) also implies that for
any a >0

F(Xy —a) < Fy(Xy —0)+ I8 <  + 16 < F(i(y) +9)

and thus that Xy —a < &*(y) + 6. Letting @ — 0 yields
XN < 2*(y) + 6. Now by the Dvoretzky—Kiefer—Wolfowitz
inequality [17],

P{\XN — (Y| > e

Yzy}
< P{stmlp|F(m\Y) — Fy(z|Y)| > L5‘Y = y}

252
§2€_2L6N

)

which completes the proof. ]
We are now ready to prove Variation 6.
Proof of Variation 6: Let ¢ > 0. By the triangle
inequality, we have

Y =y

<E [|X —:%*(Y)|‘Y - y} +E [|XN —:E*(Y)\‘Y - y} .

E {\X — Xyl




‘We now bound the second term as

E[1Xx - " (V)Y =]

—E [|XN — WMy 2y s @<a|Y = y}

+E {'XN — W2y s> |Y = y]
§6+EPB L xn-a)>e) Y:y} 1
<et2BP{|Xy — (V)] > |y =y}
< e+ 4Be 2L (AN 19

where (13) follows since | Xy —2*(y)| < |Xn|+|2*(y)| < 2B
by the triangle inequality and by the assumption that | X| < B
almost surely, and (14) follows by Lemma 4. Taking expecta-
tion w.r.t. Y completes the proof. ]
B. Quadratic Loss

Suppose that the distortion function is the quadratic loss
d(z,%) = (z — )% The optimal estimator in this case is the
conditional expectation (mean)

&*(y) = E[X|Y =y].

Note that the quadratic loss is not a metric (it does not follow
the triangle inequality) and hence Lemma 1 is not applicable
here. Nonetheless, we have

E[(X - X")?|Y =y

=E[(X —2"(y) - X'+ 3" (y)*|Y =]

=E[(X - 2"(y)°|Y = y] + E[(X" — 2"(y)*|Y =y,
which implies the following factor-of-two result.
Variation 7.

E[(X - X")?] = 2E[(X - 2"(Y))?].

We now consider taking multiple samples from the poste-
rior f(x|y). Define our posterior sampling estimator as the
empirical mean
1
N

Unlike detection or MMAE estimation, the convergence in this
case linear rather than exponential.

Xy = —(X| +...+ X}).

Variation 8.

E[(X — Xn)?] = (1 i 1) E[(X —a* (V). (5)

N

We can also characterize the performance of the posterior
sampling estimator through its convergence to X in probabil-

1ty.

Variation 9. Suppose that | X| < B < oo almost surely. Then,
forany e >0and 0 < <1

P{|X —Xn| > e} <P{|X—a*(Y)| > de} +2e < N/4B,
where § :=1 — 6.

Proof: Let € > 0 and § € (0,1). For a metric d over
an alphabet X, and for any random variables X, X’, and X"
over X, by the triangle inequality and union bound, we have

P{d(X,X") > e} <P{d(X,X) > de} + P{d(X', X) > de}.

Using this fact conditioned on {Y =y}, and replacing X' =
Xy and X" = 3*(Y), we have

P{|X*XN| ZEY:Z/}

<P{Ix—a" (V)| = be

Y:y}
+P{1Xy - (V) 2 0y =y}
Yy — y} 1 0e 07 N/4B?

where the last inequality follows by Hoeffding’s inequality
since E[Xy|Y = y] = &*(y). The desired claim follows by
averaging w.r.t. Y. ]

< P{|X—:£~*(Y)| > §e
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