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Abstract—Sequential prediction of m−ary individual se-
quences under the Hamming loss, where m ≥ 2, is studied. In
particular, leveraging a connection to the follow-the-regularized-
leader family of algorithms in online learning, the strategy of
Feder, Merhav and Gutman [1] for binary universal prediction
is extended to arbitrary alphabet size, and matching upper
and lower bounds obtained on the regret achieved by the
aforementioned strategy.

I. INTRODUCTION

We consider the problem of sequentially predicting m−ary
sequences under the Hamming loss, for m ≥ 2. Formally,
at time step t, given some history yt−1 ∈ [m]t−1 (where
[m] := {1, 2, . . . ,m} and yt−1 = y1, y2, . . . , yt−1), the
decision maker must pick a (possibly randomized1) prediction
Ŷt ∈ [m] for what she thinks the next presented yt is going
to be. Upon being presented a yt ∈ [m], which may be done
in an adversarial fashion, the decision maker suffers a loss of
1{Ŷt ̸= yt} (i.e. the Hamming/0-1 loss; this simply measures
if the decision maker made a mistake or not). In particular,
the quantity of interest is the expected loss E[1{Ŷt ̸= yt}].
Let the decision maker pick Ŷt ∼ pt(·|yt−1) where pt(·|yt−1)
is a probability mass function (pmf) over [m] (constructed by
the decision maker based on the history yt−1). At the end of
this sequential game (at, say, t = n) the performance of the
predictor P = {p(·|yt−1)}nt=1 on sequence yn is evaluated
in terms of the regret achieved, which is defined as

Reg(P, yn)

:= E

[
n∑

t=1

1{Ŷt ̸= yt}

]
−min{n− k1(y

n), n− k2(y
n), . . . , n− km(yn)}

=

n∑
t=1

(1− pt(yt|yt−1))

−min{n− k1(y
n), n− k2(y

n), . . . , n− km(yn)} (1)

where ki(yn) =
∑n

t=1 1{yt = i}, i.e. the count of i ∈ [m] in
the sequence yn. Thus, the regret measures the performance
of the predictor compared to the best static predictor in m
(i.e. choosing Ŷt = j, j ∈ [m]). The worst-case regret of the
method p is then defined as

Reg(P) := max
yn

Reg(P, yn). (2)

1It is well known that randomization is necessary for the decision maker
to achieve a sublinear regret [2].

The described problem is sometimes also known as univer-
sal prediction (UP) [3]. This document considers a particular
prediction strategy PFMG = {pFMG

t (·|yt−1)}nt=1 proposed
by Feder, Merhav and Gutman (FMG) in their landmark
work [1] for the case of m = 2 (i.e. for binary prediction).
Using the fact that this algorithm can be shown as a particular
instance of the follow the regularized leader (FTRL) family
of algorithms [4], we propose a natural generalization of the
FMG predictor to arbitrary m > 2 alphabet size. We also
show upper and lower bounds on Reg(PFMG) for arbitrary
alphabet sizes, and in particular establish the following result.

Theorem 1:

max
{√

n/16− 3m2,
√
n/8π

}
≤ Reg(PFMG) ≤ 2

√
n.

Organization: Section II explains the online linear optimiza-
tion (OLO) problem and casts universal prediction in this
framework, elaborates on PFMG for m = 2 and casts it as
a FTRL solution, and proposes a generalization of PFMG

for m > 2. Section III establishes upper and lower bounds
on Reg(PFMG) for arbitrary alphabet size m. Section IV
concludes with a discussion and directions for further work.

Notation: We use ∆m−1 to denote the m − 1 dimensional
simplex. ej denotes the standard basis vector with the j−th
component 1 (and every other component 0), and 1 denotes
the all-ones vector. All vectors are written in boldface and
always reside in Rd where the dimension d will be clear from
the context. We will sometimes use kj,t−1 =

∑t−1
i=1 1{yi = j}

i.e. the count of letter j in the history so far when the history
yt−1 is clear from the context.

II. UNIVERSAL PREDICTION AS OLO AND STRATEGIES

A. OLO Setup and Reduction to m−ary Prediction

We start by defining the OLO problem, which has served
as one of the fundamental building blocks of modern online
learning theory [5]. OLO, like m−ary prediction is a sequen-
tial game, in which at time step t:

• The decision maker picks xt ∈ V where the decision set
V is non-empty, closed, and convex. The decision xt in
general will depend on the history of the game so far.

• Nature presents a vector gt ∈ B (where B is some set),
possibly adversarially.

• The decision maker incurs a loss ⟨xt,gt⟩.



The regret for this game (for a strategy X = {xt(g
t−1)}nt=1

of the decision maker) is defined as

RegOLO(X ,gn) :=

n∑
t=1

⟨xt,gt⟩ − inf
u∈V

n∑
t=1

⟨u,gt⟩. (3)

and the worst-case regret for strategy x,

RegOLO(X ) := max
g1,...,gn

RegOLO(X ,gn).

We then have the following observation.
Observation 1: Consider an OLO game where the decision

set V = ∆m−1, and let POLO = p(gt−1) be a corresponding
strategy (the notation p highlights the fact that the decision is
a pmf over [m]). Then, by choosing universal predictor PUP

to be pUP(·|yt−1) = p(−ey1
, . . . ,−eyt−1

), we have

Reg(PUP, yn) = RegOLO(POLO,−ey1
, . . . ,−eyn

) (4)

and consequently

max
yn

Reg(PUP, yn)

= max
yn

RegOLO(POLO,−ey1
, . . . ,−eyn

).

Observation 1 tells us that any OLO method with the decision
set being the simplex can directly be used as a UP method,
and its worst-case regret in UP can simply be seen as the
worst-case regret in OLO over all sets of inputs of the form
−ey1 , . . . ,−eyn , yn ∈ [m]n. Given Observation 1, the natural
next question to ask is what strategies and algorithms for
solving OLO exist, and what are their regret guarantees. To
this end, one of the most powerful approaches is the follow-
the-regularized-leader (FTRL) approach [5], [6]. Rather than
being one algorithm, FTRL is really a family of algorithms for
solving the general OLO problem formulated in Section II-A2.
For a particular sequence of regularizer functions {ψt}nt=1,
where each regularizer ψt : V → R, FTRL picks xt to be the
minimizer of (〈

x,

t−1∑
i=1

gi

〉
+ ψt(x)

)
. (5)

The key idea behind FTRL is to introduce stability to the
predictions—this avoids, for example, the erratic behaviour
of follow-the-leader (FTL) (simply taking the action that
minimizes loss on the observed history so far, or equivalently
ψt ≡ 0) on sequences like 1, 2, 1, 2, 1, 2, . . . , 1, 2 which leads
to linear regret in binary universal prediction for FTL.

A large variety of regularizer functions have been consid-
ered in the literature, and often the choice of regularizer is
made by carefully taking geometry of the V,gt as well as other
aspects of the problem to be solved in mind. In this work, we
will be concerned with the ℓ22 regularizer (definition below
in (6)), the use of which leads to the following simplification
for the form of xt(g

t−1).

2FTRL is described for the more general problem of online convex
optimization, of which OLO is a canonical case.

Proposition 1: If for some fixed x∗ ∈ V and sequence of
(positive) regularization weights η1, . . . , ηn, we take

ψt(x) =
1

2ηt
∥x− x∗∥22, (6)

then we have the corresponding OLO strategy

xt =
∏
V

(
x∗ − ηt

t−1∑
i=1

gi

)
(7)

where
∏

V (x) = argminy∈V ∥x − y∥2 denotes the (Eu-
clidean) projection on the set V .
The form for xt in (7) is very similar to the online gradient
descent (OGD) update, see [6]. In fact, with a constant
regularization weight and if there were no projection step, the
two algorithms are exactly equivalent.

B. The FMG strategy for binary prediction

In this section, we revisit the FMG strategy proposed in [1]
for binary prediction, i.e. when m = 2 so that the sequence
yn ∈ {1, 2}n. It can be seen that the binary prediction problem
corresponds to simply choosing, at time t, a number pt :=
pt(1|yt−1) ∈ [0, 1] so that pt(2|yt−1) = 1 − pt (we suppress
the dependence of pt on history yt−1 for notational clarity;
recall also that kj,t−1 =

∑t−1
i=1 1{yi = j}).

To define the FMG predictor, first recall the definition of
the Laplace (or add-1) probability assignment

qL,t =
k1,t−1 + 1

t+ 1

Then, for any yt−1 and a sequence ϵ1, . . . , ϵn (this is analogous
to the regularization weight ηt from OLO) pFMG

t is defined
as

pFMG
t =

{ 0, for qL,t − 1
2 ≤ −ϵt

1
2 +

qL,t− 1
2

2ϵt
for − ϵt < qL,t − 1

2 ≤ ϵt
1 for qL,t − 1

2 > ϵt

This can be related to the FTRL algorithm considered in

 

 

Fig. 1. The binary FMG predictor

Section II-A as follows.
Proposition 2: For the OLO problem with V = ∆1 (i.e.

the 1-dimensional simplex, equivalently just [0, 1]) and gt =



−eyt
, yt ∈ [1, 2], choosing pFTRL

t using the FTRL strategy
(in (5)) with the regularizer ψt(x) =

1
2ηt

∥∥x−
[
1
2

1
2

]∥∥2
2

and
ηt =

1
2(t+1)ϵt

yields pFTRL
t = pFMG

t .
Remark 1: Rakhlin and Sridharan have previously consid-

ered FTRL with the ℓ22 regularizer for binary prediction [4,
Section 21.3] and derived the method displayed in Figure
1; they furthermore also derived Blackwell’s predictor [7] as
FTRL with ℓ22 regularizer and a history-dependent regulariza-
tion weight. However, they did not make a connection to the
FMG predictor, or consider arbitrary m−ary alphabets.

Remark 2 (Regularization weights): The regularization
weights η1, . . . , ηn (or, ϵ1, . . . , ϵt in pFMG

t ; sometimes referred
to as learning rates) frequently appear in online learning
algorithms, and are often selected so as to optimize the regret
bounds achieved. In particular, the FMG predictor chooses
ϵt =

1√
t

that yields the (order) optimal regret of O(
√
n).

C. FMG strategy for m > 2

The FTRL view of the FMG strategy outlined in Sec-
tion II-B leads to a natural extension of it to the case when
alphabet size m > 2. In particular, for a given sequence
yn ∈ [m]n, we consider the OLO game with gt = −eyt ,
decision set V = ∆m−1 and employ the FTRL strategy in (5)
with regularizer ψt(x) = 1

2ηt

∥∥x− 1
m1
∥∥2
2

for a sequence of
positive and decreasing regularization weights η1, . . . , ηn. By
Proposition 1, we have that

pFMG
t (·|yt−1) =

∏
∆m−1

(
1

m
1+ ηt

t−1∑
i=1

eyi

)

=
∏

∆m−1

(
1

m
1+ ηt

[
k1,t−1 . . . km,t−1

])
.

(8)

We remark in passing that there exist efficient algorithms for
projection on the simplex [8]. Using known expressions for
Euclidean projection on the simplex [9, Section 8.1.1], the
expression (8) gives us, for some j ∈ [m]

pFMG
t (j|yt−1) =

(
1

m
+ ηtkj,t−1 − ν∗

)+

(9)

where x+ = max{x, 0} and ν∗ is the solution to
m∑
j=1

(
1

m
+ ηtkj,t−1 − ν

)+

= 1 (10)

Let us order the counts of the letters at time t− 1 as3

k[1],t−1 ≥ k[2],t−1 ≥ · · · ≥ k[m],t−1 (11)

with ties broken arbitrarily. With some abuse of notation, we
use [j] to denote the letter with the j−th largest order statistic
in (11), so that pFMG

t ([j]) denote the probability assigned to
the letter that has the j−th largest count in yt−1 (so that

3The use of [l] in Section II-C only is distinct from, and not to be confused
with the notation for {1, . . . , l}.

pFMG
t ([1]) denotes the probability assigned to the letter that

has the largest count in yt−1, and so on).
Now, let f(ν) denote the expression on the left hand of (10),

so that finding pFMG
t entails finding the solution to f(ν) = 1.

Since f is monotonically decreasing with f(0) = 1+ηt(t−1)
and f

(
1
m + ηtk[1],t−1

)
= 0, the solution to f(ν) = 1 lies in[

0, 1
m + ηtk[1],t−1

)
. This idea leads to the following Lemma.

Lemma 1: Let f(ν) :=
∑m

j=1

(
1
m + ηtkj,t−1 − ν

)+
. If ν∗

satisfying f(ν∗) = 1 lies in

1

m
+ k[j∗+1],t−1 ≤ ν∗ <

1

m
+ k[j∗],t−1 (12)

(let k[m+1],t−1 := − 1
m ), then for j∗ + 1 ≤ l ≤ m

pFMG
t ([l]) = 0 (13)

and

pFMG
t ([l]) =

1

j∗
+ ηt

(
k[l],t−1 −

k[1],t−1 + . . .+ k[j∗],t−1

j∗

)
(14)

for 1 ≤ l ≤ j∗.
To further illuminate the philosophy behind this method,

we can consider further simplifications in two extreme cases:
when the history yt−1 is dominated by one letter (so that the
largest count k[1],t−1 is quite large) and when the history yt−1

has adequate representations of all the letters (so that even
the smallest count k[m],t−1 is large enough). The following
corollary considers these two cases.

Corollary 1 (Two extreme cases):
1) When k[m],t−1 ≥ t−1

m − 1
mηt

, we have pFMG
t (j) = 1

m +

ηt
(
kj,t−1 − t−1

m

)
, so that pFMG

t (j) > 0 for all j.
2) When k[1],t − k[2],t−1 ≥ 1

ηt
, pFMG

t ([1]) = 1 so
pFMG
t (j) = 0 for all j ̸= [1].

Remark 3: Lemma 1 and Corollary 1 illustrate the spiritual
similarity of the m−ary FMG predictor to the binary FMG
predictor—both assign zero probability to letters that appeared
infrequently in the observed history so far, rather than keeping
a nonzero mass at any letter that has appeared at least once
(as other methods such as the Hedge algorithm [10] are wont
to do). Note that (14) also recovers pFMG

t for the binary case.

III. UPPER AND LOWER BOUNDS ON REGRET

In this section, we provide a proof of Theorem 1 for PFMG

described in Section II-C for regularization weight ηt = 1√
t
.

We note that for m = 2 an alternate proof on the regret bound
may be found in [1] and [10, Exercise 8.8].

A. Upper bound on Reg(PFMG)

Calculating the regret of the FMG predictor for worst-case
yn is equivalent to calculating the regret of the FMG predictor
in the OLO game for the worst case sequence of input vectors
−ey1

, . . . ,−eyn
by Observation 1. Since PFMG is the FTRL

update in (5) with ℓ22 regularizer, we can use a now-standard
regret analysis for FTRL algorithms using strong convexity4.

4For a thorough exposition on the history and development of FTRL
methods and regret analyses, the reader is referred to [6, Section 7.13].



The main result used is essentially [6, Corollary 7.9]. Firstly,
we note that in our OLO case, ℓt(x) = ⟨x,−eyt⟩ which is
linear and therefore convex. Next, V = ∆m−1 nonempty,
closed and convex. Finally, ηt = 1√

t
implies ηt+1 ≤ ηt and

the function ψ(x) = 1
2

∥∥x− 1
m1
∥∥2
2

is 1-strongly convex with
respect to the ℓ2 norm ∥ · ∥2; to show this it suffices to note
that ∇2ψ(x) = I (the m ×m identity matrix) and therefore
for all x,y we have ⟨∇2ψ(x)y,y⟩ = ∥y∥22 thereby implying
1-strong convexity [6, Theorem 4.3]. Thus, we have verified
that the conditions required for [6, Corollary 7.9] apply, and
therefore we have for any yn

Reg(PFMG, yn)

= RegOLO(PFMG,−ey1 , . . . ,−eyn)

≤
maxx∈∆m−1

∥∥x− 1
m1
∥∥2
2

ηn
+

1

2

n∑
t=1

ηt∥eyi
∥22 (15)

≤ 1

ηn
+

1

2

n∑
t=1

ηt∥eyi∥22 (16)

≤ 2
√
n (17)

where (15) uses that the dual norm of the ℓ2 norm is
the ℓ2 norm, (16) uses the fact that for any p ∈ ∆m−1,∥∥p− 1

m1
∥∥2
2

≤ 1, and (17) uses ∥eyi∥2 = 1 and that∑n
t=1

1√
t
≤ 2

√
n.

B. Lower bound on Reg(PFMG)

To lower bound the regret of PFMG, we evalu-
ate the regret of this method on the sequence zn =
1, 2, ..,m, 1, 2, ..,m, ....1, 2, ..m i.e. the repeated 1, ...,m se-
quence (for simplicity, assume for now that m divides n).

Define the l + 1−th phase as the time period ml + 1 ≤
t ≤ ml +m. We will calculate the loss through the l + 1−th
phase, and then add up the cumulative loss over all phases. For
all l ≥ m, we first note that throughout the l + 1−th phase,
i.e. for t = ml + i, i ∈ [m], we have that k[m],t−1 = l ≥
ml+i−1

m −
√
ml+i
m and therefore by Corollary 1, we have that

pFMG(j|zt−1) = 1
m + ηt

(
kj,t−1 − t−1

m

)
throughout the l−th

phase.
Now, let l > m. We will calculate the loss in the l + 1−th

phase. First, note that at t = ml+ i (i.e. the i−th time step in
this phase) the counts are k1,t−1 = k2,t−1 = . . . = ki−1,t−1 =
l + 1, and ki,t−1 = · · · = km,t−1 = l. Therefore,

pFMG(i|zt−1) =
1

m
+

1√
ml + i

(
l − ml + i− 1

m

)
=

1

m
− i− 1

m
√
ml + i

and since at t = ml + i the corresponding yt = i, the loss
at the i−th time step in this phase is 1 − pFMG(i|zt−1) =
1− 1

m + i−1
m

√
ml+i

. Therefore, total loss in the l + 1-th phase

Loss(l + 1) = m

(
1− 1

m

)
+

m∑
i=1

i− 1

m
√
ml + i

≥ m− 1 +
1

m
√
ml +m

m∑
i=1

(i− 1) (18)

≥ m− 1 +

√
m

4
√
l + 1

(19)

where (18) follows by using i ≤ m,and (19) follows since the
sum of first m− 1 natural numbers ≥ m2

4 . Now,

Loss(PFMG, zn) ≥
n/m−1∑
l=m

Loss(l + 1)

≥ n

m
(m− 1)−m2 +

√
m

4

n/m−1∑
i=m

1√
l + 1

(20)

and since the best static competitor’s loss is n − n
m we have

by the above fact and (20)

Reg(PFMG, zn) ≥ −m2 +

√
m

4

n/m−1∑
i=m

1√
l + 1

(21)

≥ −m2 +

√
m

4

(
1

2

√
n

m
− 2

√
m

)
=

√
n/8− 2m2

showing a lower bound that scales as
√
n for the FMG strategy,

for large enough n. Finally, when m doesn’t exactly divide n,
some simple changes can be made to the above analysis (such
as replacing n/m with ⌊n/m⌋ and reducing the horizon by at
most m steps) yields the result.

C. General Lower Bound on m−ary Prediction

Consider a m−ary predictor P = {pt(·|yt−1)}nt=1. In this
section, we establish the following.

Theorem 2: For any m−ary prediction method P ,
Reg(P) ≥

√
n
8π .

To see this, let the random variables Y n ∼ Uniform{1, 2}
i.i.d. We then have for any prediction method P

Reg(P) = max
yn∈[m]n

Reg(P, yn)

≥ EY n [Reg(P, Y n)]

= EY n

[ n∑
t=1

(1− pt(Yt|Y t−1))

−min{n− k1(Y
n), . . . , n− km(Y n)}

]
= EY n

[ n∑
t=1

(1− pt(Yt|Y t−1))
]

− EY n [min{n− k1(Y
n), k1(Y

n)}] (22)

where (22) follows since Y n ∈ {1, 2}n and therefore
k2(Y

n) = n − k1(Y
n), and k3(Y

n) = . . . = km(Y n) = 0.
We now consider the first term on the right hand side of (22)

EY n [pt(Yt|Y t−1)] = EY t [pt(Yt|Y t−1)]

= EY t−1 [EYt
[pt(Yt|Y t−1)|Y t−1]]



= EY t−1

[
pt(1|Y t−1) + pt(2|Y t−1)

2

]
(23)

= EY t−1

[
1−

∑m
j=3 pt(j|Y t−1)

2

]

=
1

2
−

EY t−1

[∑m
j=3 pt(j|Y t−1)

]
2

(24)

where we have used in (23) that Yt is independent of Y t−1 and
is uniformly distributed in {1, 2}. Then, we have, using (24)

EY n

[
n∑

t=1

(1− pt(Yt|Y t−1))

]

=

n∑
t=1

(
1− EY n [pt(Yt|Y t−1)]

)
=

n∑
t=1

1

2
+

EY t−1

[∑m
j=3 pt(j|Y t−1)

]
2


=
n

2
+

∑n
t=1 EY t−1

[∑m
j=3 pt(j|Y t−1)

]
2

≥ n

2
(25)

since probabilities are always ≥ 0. Using (25) in (22) we have

Reg(p) ≥ n

2
− EY n [min{n− k1(Y

n), k1(Y
n)}]

= EY n

∣∣∣n
2
− k1(Y

n)
∣∣∣ = E

∣∣∑n
t=1 Zt

∣∣
2

(26)

where Zn are i.i.d. Rademacher (i.e. Unif{−1, 1}) random
variables. The quantity (26), which is half the expected dis-
tance of a uniform random walk from the origin after n steps,
is well known to scale as

√
n
2π (1+o(1)); but in particular we

have that E
∣∣∑n

t=1 Zt

∣∣ ≥ 1
2

√
n
2π which yields the result.

Remark 4: Section III-B and Theorem 2 together give
two lower bounds, one of which might be tighter depending
on the values of n and m. An additional utility of the
technique in Section III-B is that it strongly hints that the
sequence 1, 2, . . . ,m, . . . , 1, 2 . . . ,m is the sequence on which
PFMG occurs maximal regret; this hearkens back to the proof
technique in [1] where the best and worst sequences for binary
prediction were pinpointed.

Remark 5: Cover [2] established the following minmax
result in the context of binary (m = 2) universal prediction

min
P

max
yn

Reg(P, yn)

=
n

2
− EY n∼Unif{1,2}i.i.d.[min{Y n, n− Y n}] (27)

=
1

2
EZn∼Unif{−1,1}i.i.d.

∣∣∣∣∣
n∑

t=1

Zt

∣∣∣∣∣ =
√

n

2π
(1 + o(1)) (28)

and also showed that the (exact) minmax optimal algo-
rithm for a finite horizon is to simply predict Ŷt =
Majority{yt−1, ζnt+1} where ζnt+1 ∼ Uniform{1, 2} i.i.d. By
a m−ary extension of (27) (cf. [11, Lemma 2]), we have

min
P

max
yn

Reg(P, yn)

= EY n [max{k1(Y n), . . . , km(Y n)}]− n

m
. (29)

While a sharp characterization of the right hand side of (29)
is still elusive (unlike the m = 2 case (28), where the
exact asymptotics of ∼

√
n
2π are known), O’Donnell and

Wright [12, Theorem 5.2] provide an upper bound of 2
√
n,

which is independent of the alphabet size m. This matches
with our results that Reg(PFMG) = O(

√
n) with no de-

pendence on m. Note in particular that (29) does not scale
as

√
logm, as one may expect from the maximum of m

sub-Gaussian random variables [13, Exercise 2.5.10]. This is
because k1(Y n), . . . , km(Y n) are correlated, and the

√
logm

is achieved when the random variables are independent.

IV. DISCUSSION

We considered universal prediction for alphabet size m ≥ 2,
and proposed a generalization of the universal predictor of
FMG to arbitrary alphabet size. We note that while previous
work such as notably [14] generalizing the FMG strategy has
been performed, to the best of our knowledge the connection
to FTRL hasn’t been leveraged previously. We established
matching regret upper and lower bounds on the performance
of this predictor, in particular showing that the regret scales as
Θ(

√
n) for any alphabet size m. This begs a comparision with

the canonical online learning problem of prediction with expert
advice (PWE), which is simply online linear optimization with
the decision set being the simplex, and gradient gt being
such that ∥gt∥∞ ≤ 1. Therefore, universal prediction is a
special case of PWE with the special form of the gradient
gt = −eyt , yt ∈ [m]. It is because of this rather restricted
form of the gradient that one is able to achieve a regret
scaling as

√
n rather than

√
n logm as is the optimal rate

in PWE, see [10]. This optimal rate in PWE is achieved
by the Hedge algorithm, which is also an FTRL algorithm
with the regularizer ψt(x) = 1

ηt
D
(
x∥ 1

m1
)
, where D(·∥·)

is the Kullback-Leibler (KL) divergence. Interestingly, if one
uses the ℓ22 regularizer for PWE, the regret scales as

√
nm,

achieving an exponentially worse dependence on m.
We state two natural follow-up questions. Firstly, follow-

ing [1], it would be very interesting to characterize the exact
best and worst sequences for m−ary universal prediction.
Secondly, inspired by the earlier discussion on KL-divergence
vs ℓ22 regularizer, an important basic question is whether there
is a principled way of choosing the “right" regularizer for an
online learning problem if one is to use FTRL. A satisfying
answer to these questions would be useful in achieving a
better understanding of the fundamental limits of and optimal
strategies for sequential decision making.
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