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Abstract

Regret minimization in the problem of prediction with expert advice in the presence of noisy
feedback is a fundamental challenge in online learning and sequential decision making. A general
framework is proposed for designing and analyzing no-regret algorithms in this setting. This
analysis, when specialized to several canonical channel models, is shown to lead to tight bounds
on the regret thus characterizing how the noise level affects the regret and demonstrating that
in some cases it is possible to achieve the same regret as with noiseless feedback.

1 Introduction

Prediction with expert advice is a fundamental problem in online learning and sequential decision
making [Cesa-Bianchi et al., 1997a, Cesa-Bianchi and Lugosi, 2006, Hazan et al., 2016, Orabona,
2019] where the goal is to aggregate decisions from m ≥ 2 “experts" and achieve performance
approaching that of the best individual expert in hindsight in the long run, without any prior
knowledge of the identity of this hindsight-optimal expert.

In this paper, we study a variation on the prediction with expert advice setting where the
feedback available to the decision maker at each step is corrupted by noise. To formally define our
problem setup, we recall first the standard prediction with experts setting (with m experts): This
takes the form of a sequential game where at each time t ∈ [n]

• The decision-maker picks pt ∈ ∆m−1, i.e. a probability distribution on the m−simplex based
on the feedback so far, representing the weight placed on each expert.

• The loss vector ℓt ∈ L := [0, 1]m is revealed, where ℓtj represents the loss incurred by the j−th
expert in round t, and the decision maker incurs loss ⟨pt(ℓt−1), ℓt⟩.

For a strategy p represented by a sequence of functions {pt(·)}nt=1 where pt : Lt−1 → ∆m−1, the
regret incurred on a loss sequence ℓn := ℓ1, . . . , ℓn is defined as

Reg(p, ℓn) :=
n∑

t=1

⟨pt(ℓt−1), ℓt⟩ − min
j∈[m]

n∑
t=1

ℓtj (1)

where ⟨·, ·⟩ denotes the inner product. The interpretation of (1) is that at time t the decision maker
picks an expert at random, as per the distribution pt (so that the decision-maker’s expected loss in
the t−th round is

∑m
j=1 ptjℓtj = ⟨pt, ℓt⟩) and at the end of the game the cumulative performance of

the decision-maker is measured against that of the best fixed expert in hindsight. In particular, the
identity of the best expert(s) argminj∈[m]

∑n
t=1 ℓtj cannot be calculated before the end of the time

horizon n, making approaching the performance of this best expert the key challenge.
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The objective is to determine fundamental limits on the individual-sequence minmax regret

inf
p
sup
ℓn

Reg(p, ℓn)

or in other words, to characterize the regret obtained by the optimal strategy that works even when
the loss functions ℓn1 are chosen in an adversarial manner. A classical result [Cesa-Bianchi et al.,
1997a] characterizes the order-optimal minmax regret as

inf
p
sup
ℓn

Reg(p, ℓn) = Θ(
√

n logm) (2)

where Θ(·) hides fixed absolute constants independent of parameters such as n and m.
While the aforementioned prediction with expert advice setting (with the fundamental perfor-

mance limit characterized in (2)) is a satisfying model in many cases, it has some limitations. In
particular, in many real-world scenarios the feedback received by the decision-maker may not be
exactly equal to ℓt as it could be corrupted by noise, errors, or be communication-constrained. As an
example case, consider autonomous driving: here, decision-making is challenged by rate-constrained
feedback due to the processing time required for sensor data interpretation. Additionally, the sensor
data is often subject to additive noise, stemming from environmental factors and sensor inaccuracies,
which introduces uncertainty into the vehicle’s perception of its surroundings. Such noisy feedback
in decision-making poses a significant challenge, as any decision-making strategy has to cope with
both the uncertainty of the environment (i.e. the adversarially chosen losses ℓt) and the unreliability
of the feedback. Therefore, it is practically relevant to study how to design robust and adaptive
algorithms that can learn effectively from noisy feedback and still achieve low regret.

To capture this challenge, we consider the prediction with noisy expert advice setting where only
a partial observation ct of the loss ℓt is available to the decision-maker: for example, ct could be a
noise-corrupted version of ℓt, or it could be the finite-precision output available when ℓt is conveyed
over a rate-constrained channel. Formally, in this noisy setting we have

• The channel, which is a sequence of random or deterministic transformations acting on the
losses ℓt at time t as ct : Lt → C, where C is the channel output alphabet.

• The decision, which is a distribution pt(c
t−1) constructed on the basis of the channel outputs

ct−1 available so far.

The challenge in this setup is that with only knowledge of the (noisy) channel outputs cn, we wish
to perform as well, in expectation, as the best expert on the clean loss function ℓn. Formally, we
are interested in the quantity

Reg(p, Pc|ℓ, ℓ
n) :=

n∑
t=1

⟨E[pt(ct−1)], ℓt⟩ − min
j∈[m]

n∑
t=1

ℓtj (3)

for the worst-case individual sequence ℓn. Here, the E[·] is with respect to any noise induced by the
channel Pc|ℓ. We emphasize that this is a strictly more difficult problem than prediction with expert
advice (compare (3) with (1)) since while the benchmark performance remains the same in both
cases (minj∈[m]

∑n
t=1 ℓtj), in the noisy expert advice setting this performance must be approached

with only knowledge of ct which is a degraded version of ℓt. Naturally, the regret would depend not
only on the performance of the experts, but also on some measure of the quality of the channel.

While the outlined noisy expert advice setting is quite general, two practically-motivated classes
of channels are of particular interest in this paper:
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• Memoryless noise. Here, the ct is the output of a fixed known random transformation
Pc|ℓ with input ℓt. For example, the additive white Gaussian noise (AWGN) channel acts as
ct = ℓt + Zt where Zt ∼ N (0, σ2I). In this case, we wish to devise a decision strategy p that
at time step t maps the noisy outputs ct−1 to a decision and achieves low regret (3).

• Quantization noise. Here the channel output is C :=
[
2R
]
, i.e. there are only R bits

available to communicate the loss vector ℓt to the decision maker. The decision maker has a
twofold challenge: firstly, to devise an encoding strategy that maps the loss functions observed
so far ℓt into an R−bit message ct; and secondly to devise a decision strategy that maps all
the messages received so far ct−1 into a distribution over experts pt.

1.1 Main results

Our main result is a characterization of the fundamental limits of minmax regret in the prediction
with noisy expert advice setting, for several practically-relevant canonical channels in information
theory and machine learning. To achieve this characterization, we present two very general results
which are then specialized to the aforementioned channels of interest.

To establish an upper bound on the minmax regret, one must construct a strategy whose regret
achieves said bound. To this end, we provide a general strategy based on the exponential weights
(Hedge) algorithm [Cesa-Bianchi et al., 1997b] and analyze this strategy’s regret for general channels,
establishing that it depends on the mean-square error of estimating ℓt from ct (see Theorem 1 for
a precise statement). To achieve a lower bound on the regret, we provide a fundamental converse
on the performance of any strategy. This general converse quantifies the intuition that the regret
grows as the quality of the channel degrades, and in particular depends on a quantity called the
contraction coefficient of the channel (see Theorem 2 for a precise statement).

Theorems 1 and 2 when specialized to particular channels yield the following tight characteri-
zation of regret in several noise models. Here, Reg(Pc|ℓ) represents the minmax regret of prediction
with noisy expert advice for channel Pc|ℓ.

• Binary Symmetric Channel. If ℓt ∈ {0, 1}m, the binary symmetric channel with bias θ
(denoted as BSC(θ)) has output ctj = ℓtj ⊕ Ztj where ⊕ denotes modulo-2 addition and the
Ztj ’s are Bern(θ) i.i.d. That is, all bits are (independently) flipped with probability θ. If the
channel Pc|ℓ is a binary symmetric channel BSC(θ), then our results yield

Reg(BSC(θ)) = Θ

(√
n logm

(1− 2θ)2

)
. (4)

• Binary erasure channel. For ℓt ∈ {0, 1}m, the binary erasure channel with erasure prob-
ability e has output ctj = ℓtj with probability 1− e, and is equal to erasure symbol “?" with
probability e. That is, either the channel noiselessly recovers the input, or it is erased. If the
channel Pc|ℓ is a binary erasure channel BEC(e), then our results yield

Reg(BEC(e)) = Θ

(√
logm

1− e

)
. (5)

• Additive noise channels. The general class of additive noise channels, as the name suggests,
have output ct = ℓt+Zt where Zt is a random variable representing the noise. We can further
characterize the regret for certain (classes of) distributions.
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– Gaussian noise. If the additive noise Ztj is Gaussian with variance σ2, which we denote
by AWGN(σ), then

Reg(AWGN(σ)) = Θ
(√

(1 + σ2)n logm
)
. (6)

– Uniform noise. If the additive noise Ztj is uniformly distributed in [−σ, σ] which we
denote by AddUnif(σ), then

Reg(AddUnif(σ)) = Θ
(√

(1 + σ)n logm
)
. (7)

– Symmetric log-concave noise. If the additive noise Ztj comes from an arbitrary
symmetric log-concave distribution with variance σ2, which we denote by Add(fσ), then

Ω
(√

(1 + σ)n logm
)
≤ Reg(Add(fσ)) ≤ O

(√
(1 + σ2)n logm

)
. (8)

We note that while (8) is not a tight characterization, the lower bound is tight for uniform
noise (see (7)) and the upper bound is tight for Gaussian noise (see (6)).

• 1 bit/dimension quantization: If ℓt is subject to a communication constraint and can only be
expressed with rate R = m, i.e. 1 bit for each expert, then our results yield

max
ℓn

Reg(p,m-bit, ℓn) = Θ
(√

n logm
)
. (9)

In the first three channel models, there is an extra factor, not present in the noiseless setting (2)
that is due to the noise in the channel. In particular, we see that as θ → 1/2, e → 1 and σ → ∞,
the regret cannot be sublinear in n. This makes intuitive sense since in these regimes, there is no
informative feedback to base decisions on. In the fourth setting, we have established that even with
a 1−bit/expert communication bottleneck, we can achieve the same regret as one would be able to
achieve with full-precision feedback.

1.2 Related work

To the best of our knowledge, Weissman, Merhav and Somekh-Baruch [Weissman et al., 2001]
were the first to consider noisy prediction for individual sequences ℓn [Feder et al., 1992, Merhav
and Feder, 1998] in the presence of BSC noise. They devised achievability schemes as well as a
notion of conditional finite-state predictability. They also showed achievability schemes that do not
depend on the BSC bias θ, thereby establishing universality both with respect to the best expert
in hindsight, and the unknown channel parameter. Weissman and Merhav [Weissman and Merhav,
2001] established general achievability schemes for noisy individual-sequence universal prediction,
and subsequent work [Weissman and Merhav, 2004] established similar results for noisy prediction
of stationary ergodic sources. The result in [Weissman and Merhav, 2001] was extended in [Resler
and Mansour, 2019] to the adversarial bandit setting (i.e. rather than the entire loss vector ℓt being
provided as feedback, only the loss incurred by the selected expert is presented to the decision-
maker).

A closely related area where sequential decision-making with noisy feedback has been considered
is control. The question examined here is how control systems can maintain stability and perfor-
mance despite the presence of noise in the feedback loop. While measurement-feedback control is
a classical topic [Kailath et al., 2000], the line of work [Tatikonda and Mitter, 2004a,b, Tatikonda
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et al., 2004, Kostina and Hassibi, 2019] examines fundamental limits of control performance when
the feedback is subject to communication constraints.

[Raginsky et al., 2012] considered sequential anomaly detection and sequential probability as-
signment (i.e. online prediction using the logarithmic loss [Rissanen, 1984, Xie and Barron, 1997,
Bhatt and Kim, 2021, Cesa-Bianchi and Lugosi, 2006]) in the presence of noise and established
minmax regret guarantees. Also in the setting of sequential probability assignment, [Shkel et al.,
2018] considered compressed side information available noncausally—our work considers compressed
feedback available causally, in the prediction with experts setting. Decision-making with noisy feed-
back in the sequential classification setting has been considered in [Ben-David et al., 2009, Wu
et al., 2023]. The effect of noisy observations on the equlibrium value of games was characterized
in [Hsieh et al., 2022, Sun et al., 2023]. The setting where rather than the feedback ℓt the action pt
is communicated over a noisy channel is considered in [Donmez et al., 2015, Pase et al., 2022, Hanna
et al., 2023], and minmax bounds on the regret incurred are established. The line of work [Acharya
et al., 2020a,b, 2021] considers sequential statistical inference under constraints, designing optimal
policies and well as establishing fundamental converse bounds.

We remark that our setting is distinct from that of i.i.d. ℓt and adversarially injected corrup-
tions [Amir et al., 2020], a model which aims to bridge the distance between the case where the
losses ℓt at chosen i.i.d. and the individual-sequence case (adversarial ℓt). Moreover, our choice of
benchmark being minj∈[m]

∑n
t=1 ℓtj (see the regret definition (3)) makes our setting distinct from

smoothed analysis [Haghtalab et al., 2020, Bhatt et al., 2023], where the benchmark is the best
expert in hindsight on the noisy loss function—making smoothed analysis a beyond-worst case
setting.

Recently, in part due to federated learning becoming a major paradigm of theoretical and prac-
tical interest [Kairouz et al., 2021], there has been a renewed interest in distributed learning with
communication (rate) constraints. This setting has also been considered for sequential decision-
making. In particular, recent work on stochastic bandits [Hanna et al., 2022, Mitra et al., 2023,
Mayekar et al., 2023] has served as one of the motivations for our investigation. Schemes to achieve
no-regret strategies and characterization of the the number of bits needed for the decision-maker to
achieve same regret as in the full-precision case have been proposed for multi-arm bandits [Hanna
et al., 2022] and linear bandits [Mitra et al., 2023]. Mayekar et al. [Mayekar et al., 2023], in addition
to the rate constraint consider a power-constrained AWGN channel over which the feedback must
be sent. They show an achievability and a converse result which together establish that the regret
incurs an extra factor of

√
1

SNR , where SNR denotes the signal-to-noise ratio.
In this paper, we consider the individual-sequence (adversarial), full-information (experts) set-

ting. We provide achievability and converse results for a general noise channel, and then specialize
our results to particular noise models. Interestingly, our results on 1-bit/expert quantization and
the AWGN channel match those in [Hanna et al., 2022, Mayekar et al., 2023], since in the latter the
regret scales linearly with σ and the former the regret is (order-wise) unchanged.

1.3 Organization

In Section 2 our decision-making strategy is described, as well as a general regret bound on this
scheme is presented. Before presenting the proof of the general regret bound, it is specialized
to the several channels of interest presented in Section 1.1 leading to the upper bounds on the
regret presented therein. Similarly, in Section 3 a fundamental converse (lower bound) on the
regret achieved by any strategy is presented for the general problem, which is then specialized to
the example channels of interest complementing the upper bounds obtained in Section 2. Finally,
Section 4 concludes the paper with a discussion on the results as well as directions for future work.
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2 Achievability

In this section, we propose a general achievability scheme p for no-regret learning in the noisy
experts problem. In this setting since ℓt is unavailable directly due to noise in the feedback, we
must construct a strategy using a proxy for ℓt that only uses the (noise-corrupted) ct. A natural
and intuitive idea is to construct an unbiased estimator ℓ̂t for ℓt based on ct, plug it into no-regret
strategy for the noiseless experts problem, and play with the resulting strategy. Unbiasedness of an
estimator is an important property in statistical estimation, with several interesting and attractive
consequences [Lehmann and Casella, 2006, Chapter 2]. We argue that if ℓ̂t is an unbiased estimator,
the regret incurred by using ℓ̂t as a proxy for ℓt is close to the regret incurred in the noiseless setting.
Such an idea has also been successfully employed across statistics and sequential decision-making,
with two prominent appearances of a similar idea in a sequential domain being in [Weissman and
Merhav, 2001] and [Auer et al., 1995]. The following proposition justifies the use of an unbiased
estimator.

Proposition 1 Let ℓ̂t (where ℓ̂t is a possibly noisy function of ct) be such that E[ℓ̂t|ℓ̂t−1] = ℓt, and
p be any strategy for the noiseless experts problem. Then, the strategy p̂ that plays p̂t = pt(ℓ̂

t−1)
achieves

Reg(p, Pc|ℓ, ℓ
n) ≤ E

[
n∑

t=1

⟨p(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

]
.

Proof.

⟨E[pt(ℓ̂t−1)], ℓt⟩ = E[⟨pt(ℓ̂t−1), ℓt⟩]
(a)
= E[⟨pt(ℓ̂t−1),E[ℓ̂t|ℓ̂t−1]⟩]

= E[E[⟨pt(ℓ̂t−1), ℓ̂t⟩|ℓ̂t−1]]

(c)
= E

[
⟨pt(ℓ̂t−1), ℓ̂t⟩

]
(10)

where (a) follows by the conditional unbiasedness of ℓ̂t and (b) follows by the tower property of
expectation. Moreover,

min
j∈[m]

n∑
t=1

ℓtj
(a)
= min

j∈[m]
E
[ n∑
t=1

ℓ̂tj

] (b)

≥ E
[
min
j∈[m]

n∑
t=1

ℓ̂tj

]
(11)

where (a) follows by the unbiasedness of ℓ̂t and linearity of expectation, and (b) follows since
E[min(·)] ≤ minE[·]. The Proposition follows by summing up (10) over t and from (11).

Remark 1 (Memoryless channels) If the channel is memoryless and the ct is a noisy function
of ℓt only, then constructing ℓ̂t from only ct (rather than ct) to ensure that E[ℓ̂t] = ℓt clearly satisfies
the conditional unbiased assumption in Proposition 1. In fact, such a memoryless estimator will
suffice for all our purposes in this section.

Proposition 1 establishes that upon construction of an unbiased estimator ℓ̂t, the decision-
maker can pretend that the benchmark is minj∈[m]

∑n
t=1 ℓ̂tj , and employ a no-regret strategy for

this benchmark. To construct a scheme, we need to utilize a no-regret strategy for the noiseless
setting in conjunction with an unbiased estimator ℓ̂t. To this end, recall the landmark exponential
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weights/Hedge (EW) strategy [Cesa-Bianchi et al., 1997a, Cesa-Bianchi and Lugosi, 2006, Freund
and Schapire, 1999] which is minmax optimal for the noiseless experts setting, i.e. it attains the
minmax bound (2). Our strategy will be an appropriate extension of EW that accounts for noise
in the feedback. The EW strategy assigns a weight to each expert that is inversely proportional to
the exponent of the loss incurred by the expert thus far, i.e.

pEWtj (ℓt−1) ∝ exp

(
−α

t−1∑
i=1

ℓij

)
. (12)

where α > 0 is the learning rate. We will need the following analysis of the exponential weights
strategy pEW (see for example [Luo, 2022]), which bounds the regret incurred by pEW in terms of
the second moment of the loss functions [Cesa-Bianchi et al., 2007, Gaillard et al., 2014]. It follows
the standard idea of constructing a potential function and carefully bounding the change in the
potential function at each time step, and is relegated to Appendix A.

Lemma 1 If pEWtj is chosen as in (12), and if ℓn and α satisfy −αℓtj ≤ 1 for all t and j, we have

Reg(pEW, ℓn) ≤ logm

α
+ α

n∑
t=1

m∑
j=1

pEWtj ℓ2tj . (13)

Motivated by Proposition 1, will use an unbiased estimator in conjunction with the exponential
weights strategy. Our general achievability strategy p̂EW is:

• Construct an unbiased estimator ℓ̂t for ℓt from the channel output ct.

• Play pEWt (ℓ̂t−1).

We then have the following bound on the regret of p̂EW.

Theorem 1 Let the channel Pc|ℓ be memoryless and let ℓ̂t, constructed using ct, be an unbiased
estimator. For any α > 0 define the event

E := {∃t, j : −αℓ̂tj ≥ 1}. (14)

Then,

Reg(p̂EW, Pc|ℓ, ℓ
n) ≤ logm

α
+ αn

(
1 + max

j,t
E[ℓtj − ℓ̂tj ]

2

)
+

√
4m2n2

(
1 + max

t,j
E[ℓ̂tj − ℓtj ]2

)
P(E).

Theorem 1 follows by a combination of Proposition 1 and Lemma 1. We note, in particular, that
the regret additionally depends on the mean squared error (MSE) obtained by the estimator ℓ̂t,
drawing an interesting connection between estimation and noisy regret minimization. We also note
that while strictly speaking Lemma 1 excludes non-bounded noise (since it is possible, for non-
bounded noises, that −αℓtj > 1 is possible) under very mild conditions on the tail distribution of
the noise it can be adapted for non-bounded noise distributions as well, as illustrated in Theorem 1.

2.1 Application of Theorem 1 to canonical channel models

We now instantiate Theorem 1 to the four canonical noise sources in information theory: the BSC,
the BEC, additive noise channels and quantization noise. In each case, we construct an unbiased
estimator, evaluate its mean square error and establish the upper bound on the regret incurred upon
using that particular estimator via Theorem 1.
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2.1.1 Binary Symmetric Channel

Recall that for the BSC(θ), for ℓt ∈ {0, 1}m, then ctj = ℓtj⊕Ztj where ⊕ denotes modulo-2 addition
and the Ztj ’s are Bern(θ) i.i.d. In this setting, we can establish that the estimator ℓ̂t =

ct−θ1
1−2θ is

unbiased:

E[ℓ̂tj ] =
E[ctj ]− θ

1− 2θ
=

ℓtj(1− θ) + (1− ℓtj)θ − θ

1− 2θ
= ℓtj .

Moreover, the mean squared error E[(ℓ̂tj − ℓtj)
2] satisfies

E[(ℓ̂tj − ℓtj)
2] = E

[(
ctj − θ

1− 2θ
− ℓtj

)2
]

= E
[
ctj − θ − (1− 2θ)ℓtj

1− 2θ

]
≤ 1

(1− 2θ)2
.

Using

α = (1− 2θ)

√
logm

2n
,

Theorem 1 applies to yield

Reg(p̂EW,BSC(θ), ℓn) ≤ 2
√
2n logm

(1− 2θ)
. (15)

2.1.2 Binary erasure channel

Recall that for the BEC(e), for ℓt ∈ {0, 1}m, and ctj = ℓtj with probability 1 − e, and is equal to
erasure symbol “?" with probability e. In this setting, the estimator ℓ̂tj =

ctj1{ctj ̸=?}
1−e =

ℓtj1{ctj ̸=?}
1−e

is unbiased:
E
[
ℓtj1{ctj ̸=?}

1− e

]
= ℓtj

P[ctj ̸=?]

1− e
= ℓtj

Moreover, the mean squared error E[(ℓ̂tj − ℓtj)
2] satisfies

E[(ℓ̂tj − ℓtj)
2] = E

[
(1− e)ℓtj − ℓtj1{ctj ̸=?}

1− e

]2
=

E[(1− e)2ℓ2tj + ℓ2tj1{ctj ̸=?} − 2ℓ2tj(1− e)1{ctj ̸=?}]
(1− e)2

=
(1− e)ℓ2tj − (1− e)2ℓ2tj

(1− e)2

=
ℓ2tje

1− e
≤ 1

1− e
.

Therefore, using α =

√
(1−e) logm

n and observing that −αℓtj ≤ 0, we have by Theorem 1 that

Reg(p̂EW,BEC(e), ℓn) ≤ 2

√
2n logm

1− e
. (16)
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2.1.3 Additive noise channels

Recall that for additive noise channels, the output ctj = ℓtj+Ztj where all the Ztj are independently
and identically distributed. We now establish achievability results for various (classes of) noise
distributions.

Gaussian noise. Consider ct = ℓt + Zt where Zt ∼ N (0, σ2I). The most natural unbiased
estimator to use is simply ℓ̂t = ct, with MSE E[(ct − ℓt)

2] = σ2. Note that in this case since the
noise is unbounded −αctj can be arbitrarily large—but the probability of this event occuring is
exponentially small. In particular, recalling from (14) that the event E is defined as

E := {∃t, j : −αctj ≥ 1}

we note for α =
√

logm
n(1+σ2)

P(E)
(a)

≤
n∑

t=1

m∑
j=1

P

(
ctj ≤ −

√
n(1 + σ2)

logm

)
(b)

≤
n∑

t=1

m∑
j=1

P

(
Ztj ≤ −

√
n(1 + σ2)

logm

)

≤ mnP

(
Ztj ≤ −

√
n(1 + σ2)

logm

)
(17)

(c)

≤ mn exp

(
− n

2 logm

)
(18)

where (a) follows by the union bound, (b) follows since ctj = Ztj + ℓtj and 0 ≤ ℓtj ≤ 1, and
(c) follows by using that for Z ∼ N (0, σ2) the complementary CDF P(Z ≥ x) ≤ exp(−x2/2σ2).
Thus, Theorem 1 implies that the strategy p̂EW which sets pt = pEW(ct−1) with learning rate
α =

√
logm

n(1+σ2)
achieves regret

Reg(p̂EW,AWGN(σ), ℓn) ≤ 2
√
(1 + σ2)n logm+ o(n). (19)

Uniform noise. For additive channels with uniform noise, the channel output ctj = ℓtj + Ztj

where Ztj ∼ Unif[−σ, σ] (so that the noise variance is σ2/3). Since we are interested in how the
regret scales as σ increases, it suffices to assume that σ ≥ 1. Then, consider the following estimator
ℓ̂t (which is a function of ct):

ℓ̂tj =

{ −σ + 1
2 if − σ ≤ ctj < −σ + 1

1
2 if − σ + 1 ≤ ctj ≤ σ
σ + 1

2 if σ < ctj ≤ σ + 1.
(20)

We observe that (full calculations relegated to Appendix B)

E[ℓ̂tj ] = ℓtj (21)

i.e. ℓ̂t is unbiased and that the MSE for this estimator satisfies

E[ℓ̂tj − ℓtj ]
2 ≤ σ. (22)
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For choice of learning rate α =
√

logm
n(1+σ) , we note that αℓ̂tj ≥ −σα = −σ

√
logm
n(1+σ) ≥ −1 for large

enough n. Therefore, if we use the strategy p̂EW with the unbiased estimator ℓ̂t in (20), Theorem 1
yields

Reg(p̂EW,Unif(σ), ℓn) ≤ 2
√

(1 + σ)n logm. (23)

In Section 3, we show a matching converse to (23) and establish that the regret must grow as
Ω
(√

(1 + σ)n logm
)
, showing the tightness of (23).

Symmetric noise with tail constraints. If the additive noise is symmetric, i.e. the distribu-
tion of noise Z and −Z is the same, the most natural unbiased estimator for ℓt is ℓ̂t = ct (since the
noise is additive and 0−mean) which achieves mean-square error E[ctj − ℓtj ]

2 = σ2 where σ2 is the
variance of the noise Ztj . In order to apply Theorem 1 with α =

√
logm

n(1+σ2)
to achieve regret scaling

as O(
√
(1 + σ2)n logm) (as in the AWGN channel setting) we need to establish a bound on P(E).

Following the line of reasoning employed to reach (17) we have

P(E) ≤ mnP

(
Ztj

σ
≤ −

√
n(1 + σ2)

σ2 logm

)
≤ mnP

(
Ztj

σ
≤ −

√
n

logm

)
which implies that a noise density with polynomially decaying tails (in particular for σ = 1 , if the
random variable Z satisfies for large x that P(Z ≥ x) ≤ c

x6+ϵ where c is a positive absolute constant
and ϵ > 0) suffices to achieve regret

2
√
(1 + σ2)n logm+ o(n). (24)

An important class of distributions that achieves this tail condition is log-concave distributions [Saumard
and Wellner, 2014], which are distributions having density f(z) for which the function z 7→ log f(z)
is concave. This class has a special significance across statistics and information theory and includes
distributions such as the Gaussian distribution, the uniform distribution and the Laplace distribu-
tion. Since all log-concave distributions are subexponential (i.e. have exponentially decaying tails)
these satisfy aforementioned the condition on P(E) as n grows larger. While this achievability result
for a general class of noise densities is interesting, unfortunately we do not have a general matching
converse.

While for the specific cases of Gaussian and Laplace densities, it is possible to achieve a matching
Ω(
√
(1 + σ2)n logm) lower bound for the regret, the most general converse we are able to achieve

is a fundamental lower bound of Ω(
√
(1 + σ)n logm on the regret when the class of noise densities

is log-concave. While it might appear that the converse can be strengthened in general, we have
seen that this fundamental lower bound can in fact be achieved for uniform noise distributions by
constructing a different unbiased estimator that achieves O(

√
(1 + σ)n logm) regret.

2.1.4 1-bit/expert quantization

Unlike the previous three examples (memoryless noise), in this case, the channel is not fixed. Instead,
the decision maker must select an encoding protocol that maps Lt → M := [2m] and a decision
protocol Mt−1 → ∆m−1. The real number ℓtj must be transmitted in an unbiased manner. A
randomized rounding ℓ̂tj ∼ Bern(ℓtj) achieves this with MSE E[(ℓ̂tj − ℓtj)

2] = ℓtj(1 − ℓtj) ≤ 1.
Since the encoding is memoryless and because for α > 0 we have −αℓ̂tj ≤ 0 we can readily apply

Theorem 1 with α =
√

logm
2n to achieve

Reg(p̂EW,m-bit, ℓn) ≤ 2
√
2n logm. (25)

10



Remark 2 (Adaptive quantization) The achievability scheme is a simple memoryless (random-
ized) encoding. Since this is shown to achieve the order-wise (in m and n) optimal regret (see
Section 3), an adaptive encoding strategy offers no extra benefit in terms of regret. However, it is
unclear if for rate strictly less that 1 bit/dimension a nonadaptive encoding strategy will continue to
achieve the optimal regret.

Remark 3 (Universality in channel parameters) We note that for the BSC, BEC, and addi-
tive noise channels in the strategy outlined above, one needs to set the optimal learning rate α as a
function of the channel parameter θ, e or σ. An intriguing question is that of devising a no-regret
strategy that does not depend on these parameters— [Weissman and Merhav, 2001] establish such
a strategy for the BSC that achieves, up to constants, the same regret as in (15). We leave the
question of designing such strategies for the BEC and additive noise channels for future work.

2.2 Proof of Theorem 1

Define the “bad" event E := {∃t, j : −αℓ̂tj > 1}, which by the condition stated in the Theorem
occurs with probability P(E). We will split the regret analysis into two cases: if EC occurs, where
Lemma 1 can be invoked, and if E occurs, where we will utilize a worst-case bound on regret. First,
we use Proposition 1 which yields

Reg(p̂EW, Pc|ℓ, ℓ
n) ≤ E

[
n∑

t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

]
(26)

and we have

E

[
n∑

t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

]

= E
[( n∑

t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

)
1{EC}

]
+ E

[
n∑

t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩1{E}

]
− E

[(
min
j∈[m]

n∑
t=1

ℓ̂tj

)
1{E}

]
. (27)

We analyze the three terms in the right hand side of (27) separately. First, note that if EC occurs,
then the conditions in Lemma 1 are satisfied which can be employed to get(

n∑
t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

)
1{EC} ≤ logm

α
+ α

n∑
t=1

m∑
j=1

pEWtj (ℓ̂t−1)ℓ̂2tj (28)

where (28) also uses that indicator is bounded by 1 and the term to be multiplied is positive. Next,
note that

E[pEWtj (ℓ̂t−1)ℓ̂2tj ] = E[pEWtj (ℓ̂t−1)ℓ2tj ] + E[pEWtj (ℓ̂t−1)(ℓ̂tj − ℓtj)
2] + E[2pEWtj (ℓ̂t−1)ℓtj(ℓ̂tj − ℓtj)]

(a)
= E[pEWtj (ℓ̂t−1)ℓ2tj ] + E[pEWtj (ℓ̂t−1)]E[(ℓ̂tj − ℓtj)

2]

(b)

≤ E[pEWtj (ℓ̂t−1)]
(
1 + max

t,j
E[(ℓ̂tj − ℓtj)

2]
)

(29)
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where (a) follows from the fact that ℓ̂t is independent of ℓ̂t−1 and that ℓ̂t is unbiased, and (b) uses
that ℓ2tj ≤ 1 by assumption. Taking expectations on both sides of (28) and (29) yields

E
[( n∑

t=1

⟨pEW(ℓ̂t−1), ℓ̂t⟩ − min
j∈[m]

n∑
t=1

ℓ̂tj

)
1{EC}

]
≤ logm

α
+ α

n∑
t=1

(
1 + max

t,j
E[(ℓ̂tj − ℓtj)

2]
)
E
[ m∑
j=1

pEWtj (ℓ̂t−1)
]

=
logm

α
+ αn

(
1 + max

t,j
E[(ℓ̂tj − ℓtj)

2]

)
. (30)

To bound the second term in (27), we apply

n∑
t=1

E
[
⟨pEW(ℓ̂t−1), ℓ̂t⟩1{E}

]
≤

n∑
t=1

E
[
|⟨pEW(ℓ̂t−1), ℓ̂t⟩|1{E}

]
(a)

≤
n∑

t=1

E
[
∥ℓ̂t∥∞1{E}

]
(b)

≤
n∑

t=1

E

 m∑
j=1

|ℓ̂tj |1{E}


(c)

≤
n∑

t=1

m∑
j=1

√
E[ℓ̂tj ]2

√
P(E)

(d)

≤ mn

√(
1 + max

t,j
E[ℓ̂tj − ℓtj ]2

)
P(E) (31)

where (a) uses the Holder inequality and the fact that pEW(ct−1) is a probability distribution, (b)
uses the fact that the absolute maximum in a vector is bounded by the sum of the absolute values,
(c) uses the Cauchy–Schwartz inequality, and (d) uses unbiasedness of ℓ̂tj along with the fact that
ℓ2tj ≤ 1. The third term in (27) will be dealt with similarly:

E

[(
−min

j

n∑
t=1

ℓ̂tj

)
1{E}

]
≤

m∑
j=1

n∑
t=1

E
[
|ℓ̂tj |1{E}

]

≤ mn

√(
1 + max

t,j
E[ℓ̂tj − ℓtj ]2

)
P(E) (32)

where (32) follows from (31). Finally, using (30), (31) and (32) in (27) concludes the proof.

3 Converse

In this section, we establish fundamental lower bounds on the regret maxℓn Reg(p, Pc|ℓ, ℓ
n) for any

strategy p. Recall the converse for the standard prediction with expert advice problem [Cesa-Bianchi
et al., 1997a, Cesa-Bianchi and Lugosi, 2006] where the feedback is available noiselessly from (2):

max
ℓn

Reg(p, ℓn) ≥ Ω(
√
n logm). (33)
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While this naturally serves as a lower bound on the regret incurred when the feedback is noisy, we
aim to achieve a tighter bound by further quantifying the extra penalty incurred due to the noise
in the feedback. We take the usual approach [Cesa-Bianchi et al., 1997a, Cesa-Bianchi and Lugosi,
2006, Slivkins, 2019] of reducing the experts problem to a hypothesis testing problem via a carefully
chosen ensemble of (random) loss functions and leveraging fundamental lower bounds for hypothesis
testing from information theory. To quantify the factor by which the regret must increase, we need
the following definition.

Definition 1 The strong data processing constant of a binary-input channel PY |X is defined as

η(PY |X) = sup
PX ̸=QX

D(PX ◦ PY |X∥QX ◦ PY |X)

D(PX∥QX)
(34)

where PX and QX are distributions defined on {0, 1}.

Intuitively, this measure quantifies some sense of “loss of information" in a noisy channel—this
interpretation is more clear by the alternate representation of η(PY |X) (see [Polyanskiy and Wu,
2022, Theorem 33.5])

η(PY |X) = sup
PUX :U→X→Y

I(U ;Y )

I(U ;X)
(35)

where U is an auxiliary random variable, and U → X → Y represents a Markov chain. The data
processing inequality [Cover and Thomas, 2006] from information theory immediately implies that

η(PY |X) ≤ 1;

often, as we show subsequently, we can establish η(PY |X) < 1. There has been much interest in
characterizing η(PY |X) for various channels due to numerous applications arising in the domain of
statistical inference—see [Polyanskiy and Wu, 2017, Raginsky, 2016], [Polyanskiy and Wu, 2022,
Chapter 33] for a detailed survey.

We state our general converse result next.

Theorem 2 If the noise is memoryless and component-wise independent (i.e. Pc|ℓ =
∏m

j=1 Pcj |ℓj )
then

sup
ℓn

Reg(p, Pc|ℓ, ℓ
n) ≥

√
n log(m/4)

16η(Pc|ℓ)
(36)

where with some abuse of notation, η(Pc|ℓ) (as in Definition 1) restricts the channel to binary input
{0, 1}.

Remark 4 The restriction to binary inputs appears because in order to prove a converse for the
individual-sequence regret supℓn Reg(p, Pc|ℓ, ℓ

n), we need to construct an ensemble of loss functions
that achieves high regret, and binary loss functions suffice for this purpose.

3.1 Application of Theorem 2 to canonical channel models

Before presenting the proof of Theorem 2, we instantiate the achieved bound for all the example
channels considered earlier. In each case, one needs to bound η(Pc|ℓc|ℓ).

13



3.1.1 Binary symmetric channel BSC(θ)

In this case, it is easy to evaluate (see for example [Cover and Thomas, 2006, Exercise 7.7]) that

η(BSC(θ)) = (1− 2θ)2

This implies for a large enough n that

sup
ℓn

Reg(p,BSC(θ), ℓn) ≥

√
n log(m/4)

16(1− 2θ)2
, (37)

matching up-to constants the achievability result in (15). This furthermore implies, as intuitively
expected, that as θ → 1

2 it is impossible to achieve any no-regret strategy since the corrupted
feedback ctj is a random Bern(1/2) bit carrying no information about ℓtj .

3.1.2 Binary erasure channel BEC(e)

For the BEC, is is convenient to use the characterization in (35) to evaluate η(BEC(e)). For
any Markov chain U → X → Y , I(U ;Y,X) = I(U ;X) + I(U ;Y |X) = I(U ;X), where the first
equality follows by the chain rule of mutual information, and the second follows since U and Y
are independent given X (by Markovity). Furthermore, I(U ;Y,X) = I(U ;Y ) + I(U ;X|Y ) =
I(U ;Y ) + eI(U ;X) where the second equality here follows since Y = X with probability 1 − e, in
which case the conditional mutual information is 0. Putting these two together, we see that

η(BEC(e)) = (1− e)

which implies that

sup
ℓn

Reg(p,BEC(e), ℓn) ≥

√
n log(m/4)

16(1− e)
(38)

for a large enough n matching up-to constants the achievability result in (16); and offering the
intuitive interpretation that as e → 1, since most of the feedback ℓtj gets erased it becomes impossible
to make any meaningful decisions.

3.1.3 Additive noise channels

We now consider channels of the form ctj = ℓtj + Ztj for (independent and identically distributed)
random variables Ztj . To quantify η(Pc|ℓ), we will utilize the following characterization from [Polyan-
skiy and Wu, 2017, Theorem 21]

Theorem 3 For a binary-input channel PY |X ,

H2(PY |X=0, PY |X=1)

2
≤ η(PY |X) ≤ H2(PY |X=0, PY |X=1) (39)

where H represents the Hellinger divergence between two distributions.

We can now use this result for the specific noise models we are interested in.
Additive white Gaussian noise. If Ztj ∼ N (0, σ2), then (39) implies that

η(AWGN(σ2)) = H2(N (0, σ2),N (1, σ2))
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= 1− 1

2πσ2

∫ ∞

−∞
exp

(
− x2

2σ2
− (x− 1)2

2σ2

)
dx (40)

= 2− 2e−1/8σ2
(41)

≤ 4

1 + σ2
(42)

where (42) follows since (1− e−1/8x2
)(1 + x2) ≤ 4 for all x. Using (42) in Theorem 2 implies that

sup
ℓn

Reg(p,BEC(e), ℓn) ≥
√

(1 + σ2)n log(m/4)

64
(43)

matching up to constants the achievability result in (19).
Additive uniform noise. The uniform additive noise channel has the noise Ztj ∼ Unif[−σ, σ]—

note that this noise has variance σ2/3. In this case PY |X=0 = Unif[−σ, σ] with density f0(x) =
1
2σ1{−σ ≤ x ≤ σ}, and PY |X=1 = Unif[−σ+1, σ+1] with density f1(x) =

1
2σ1{−σ+1 ≤ x ≤ σ+1}.

Let us assume that σ ≥ 1; in this case

η(Unif(σ)) ≤ H2(Unif[−σ, σ],Unif[−σ + 1, σ + 1])

= 1− 1

2σ

∫ σ+1

−σ+1
dx

=
1

2σ
. (44)

Combining (44) with the trivial bound η ≤ 1 yields

η(Unif(σ)) ≤ 1

σ + 1
(45)

for all σ > 0; implying the fundamental lower bound on the regret when the feedback is corrupted
with additive uniform noise

sup
ℓn

Reg(p,BEC(e), ℓn) ≥
√

(1 + σ)n log(m/4)

16
(46)

matching the achievability result obtained in (23) up to constants.
Additive symmetric, log-concanve noise. So far, in the additive noise examples we have

considered (Gaussian and uniform noise), we established that noisy feedback incurs a multiplicative
cost (over the noiseless case) on the regret that depends on the moments of the noise and this cost
is strictly greater than 1 (

√
1 + σ2 and

√
1 + σ respectively). In light of the achievability result

in (24), we might hope that for general additive noise channels with mild tail conditions on the
noise one can achieve η(Pc|ℓ) ≥ Ω(σ). Unfortunately, this is not the case in general—consider the
additive channel Y = X + Z with noise distribution Z ∼ Uniform{−σ, σ}—this noise distribution
is bounded; but still η(PY |X) = 1 since given Y , X is perfectly known. Therefore, to obtain a more
general result, more conditions need to be imposed on the noise distribution.

We will show a converse for the general class of symmetric log-concave distributions considered
in Section 2.1, which encompasses the Gaussian and uniform distributions considered previously.
Consider a log-concave noise distribution with variance σ2 and let f denote its density. Then,

η(PY |X) ≤ H2(PY |X=0, PY |X=1)
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(a)

≤ 2TV (PY |X=0, PY |X=1)

(b)
=

∫ ∞

−∞
|f(z)− f(z − 1)|dz (47)

where (a) follows from the well known inequality H2 ≤ 2TV between Hellinger and total variation
distances, and (b) follows from the definition of the total variation distance (and, the fact that the
density of Y |X = 1 is f(z−1)). Next, we further simplify (47) using the symmetry and unimodality
of f (since any log-concave distribution is also unimodal). Since f(z) is decreasing for z ≥ 0 and
f(z − 1) is increasing for z ≤ 1, for any z ≤ 1

2 , we have

f(z − 1) ≤ f(1/2) ≤ f(z)

and similarly for z > 1
2 , f(z) ≤ f(z − 1). Therefore,∫ ∞

−∞
|f(z)− f(z − 1)|dz =

∫ 1/2

−∞
(f(z)− f(z − 1))dz +

∫ ∞

1/2
(f(z − 1)− f(z))dz

= 2

∫ ∞

1/2
(f(z − 1)− f(z))dz (48)

= 2

(∫ ∞

1/2
f(z − 1)dz −

∫ ∞

1/2
f(z)dz

)

= 2

(∫ ∞

−1/2
f(z)dz −

∫ ∞

1/2
f(z)dz

)

= 2

(∫ 1/2

−1/2
f(z)dz

)
≤ 4

σ
(49)

where (49) is due to the following proposition.

Proposition 2 For a symmetric, log-concave distribution with variance σ2, its density satisfies
f(z) ≤ 2

σ .

Proposition 2 appears in [Marsiglietti and Kostina, 2018, Remark 6], but we provide a standalone
proof in Appendix C for completeness.

Putting together (49) and (47) along with the trivial bound η ≤ 1, we see that for any additive
noise channel with a symmetric, log-concave density

η(PY |X) ≤ 8

(1 + σ)
. (50)

This furthermore implies in the experts problem that if feedback is available with additive noise
ctj = ℓtj + Ztj where Ztj is symmetric and log-concave, then

sup
ℓn

Reg(p,BEC(e), ℓn) ≥
√

(1 + σ)n log(m/4)

128
. (51)

It is interesting to note that the converse in (51) is not tight in general. In particular for Gaussian
noise and Laplace (double exponential) additive noise (for both, we can establish a

√
1 + σ2 scaling
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by direct computation of H2(PY |X=0, PY |X=1)). Nonetheless, it is tight for uniform noise, which
is a log-concave distribution, as we have shown a matching achievability result in (23). Thus, it is
tight in the sense that it cannot be improved without imposed further restrictions on the class of
noise densities.

3.1.4 1−bit/expert quantization

Strictly speaking, Theorem 2 cannot be applied to the quantization setting—we need to show a fun-
damental lower bound over all quantization strategies including strategies with memory; Theorem 2
requires the noise to be memoryless and independent for each expert. Nonetheless, we can bypass
this limitation to establish a converse matching up to constants the achievability result obtained
in (25) for any encoding strategy (possibly adaptive). This is because a fundamental lower bound
on the noiseless regret is automatically a converse for the noisy setting; see Remark 5 for a more
detailed argument. Theorefore, one must necessarily incur Ω(

√
n logm) regret for any quantization

method—interestingly, our achievability result in (25) shows that a simple, memoryless quantizer
suffices to achieve this fundamental limit.

3.2 Proof of Theorem 2

Consider the following (random) ensemble of loss vectors:

• Pick J∗ ∼ Uniform[m].

• Given J∗ = j∗, the loss vectors ℓn are generated i.i.d., with independent components as per
the distribution

ℓtj ∼

{
Bern(1/2− ϵ), if j = j∗

Bern(1/2), otherwise
(52)

for some 0 < ϵ < 1/4 to be determined later.

Intuitively, in order to achieve sublinear regret in n with these loss functions, the decision-maker
must eventually detect the expert j∗ that has the lowest bias and therefore this can be thought of
as a hypothesis testing problem. To formalize this, we have

sup
ℓ̃n

Reg(p, Pc|ℓ, ℓ̃
n) ≥ E

[
n∑

t=1

⟨pt(ct−1), ℓt⟩

]
− E

[
min
j∈[m]

n∑
t=1

ℓtj

]
. (53)

Now, note that

E

[
min
j∈[m]

n∑
t=1

ℓtj

]
(a)

≤ E

[
min
j∈[m]

E

[
n∑

t=1

ℓtj

∣∣∣∣J∗

]]
(54)

(b)
= n

(
1

2
− ϵ

)
(55)

where (a) follows since E[min(·)] ≤ minE[·] and (b) follows since by the distribution on the losses
in (52)

E[ℓtj |J∗] =

{
1
2 , if j = J∗

1
2 − ϵ. otherwise

(56)
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To further bring out the analogy between hypothesis testing and the regret, we note that for the
random variable distributed as Jt ∼ pt(c

t−1) conditional on ct−1 (i.e. a random expert is chosen as
per the distribution pt(c

t−1))

E[⟨pt(ct−1), ℓt⟩|ct−1, ℓt] = E[ℓtJt |ct−1, ℓt],

and therefore
E[⟨pt(ct−1), ℓt⟩] = E[ℓtJt ].

Then,

E[⟨pt(ct−1), ℓt⟩] = E[E[ℓtJt |Jt]]
(a)
= E

[
1

2
1{Jt ̸= J∗}+

(
1

2
− ϵ

)
1{Jt = J∗}

]
=

1

2
− ϵP[Jt = J∗] (57)

where (a) follows from (56). Using (57) along with (55) and (53) yields

sup
ℓ̃n

Reg(p, Pc|ℓ, ℓ̃
n) ≥ ϵ

n∑
t=1

P[Jt ̸= J∗]. (58)

To further lower bound the regret, we apply the Fano inequality to each term in the right hand side
of (58)

P[Jt(c
t−1) ̸= J∗] ≥ 1− I(J∗; Jt) + log 2

logm
(59)

≥ 1− I(J∗; ct−1) + log 2

logm
, (60)

where (60) follows by the data processing inequality since J∗ → ct−1 → Jt.
Since the noise is memoryless by assumption,

I(J∗; ct) = H(ct)−H(ct|J∗)

(a)

≤
t∑

i=1

H(ci)−H(ct|J∗)

(b)
=

t∑
i=1

(H(ci)−H(ci|J∗))

=

t∑
i=1

I(J∗; ci)

(c)

≤ tI(J∗; c1). (61)

where (a) follows by the subadditivity of entropy, (b) follows since given J∗, ct are independent
(because given J∗, ℓt are independent as per (52) and the channel is memoryless by assumption),
and finally (c) follows by symmetry (lt are identically distributed, therefore so are ct). Next, we
have

I(J∗; c1) = D
(
Pc1|J∗∥Pc1

∣∣PJ∗
)
18



=
1

m

m∑
j=1

D
(
Pc1|J∗=j∥Pc1

)

=
1

m

m∑
j=1

D

Pc1|J∗=j

∥∥∥ 1

m

m∑
j′=1

Pc1|J∗=j′


(a)

≤ 1

m2

m∑
j=1

m∑
j′=1

D
(
Pc1|J∗=j∥Pc1|J∗=j′

)
(b)
=

m2 −m

m2
D
(
Pc1|J∗=1∥Pc1|J∗=2

)
≤ D

(
Pc1|J∗=1∥Pc1|J∗=2

)
(c)
=

m∑
j=1

D(Pc1j |J∗=1∥Pc1j |J∗=2)

(d)
= D(Pc11|J∗=1∥Pc12|J∗=2) +D(Pc12|J∗=1∥Pc12|J∗=2)

= D
(
Bern(1/2− ϵ) ◦ Pc|ℓ∥Bern(1/2) ◦ Pc|ℓ

)
+D

(
Bern(1/2) ◦ Pc|ℓ∥Bern(1/2− ϵ) ◦ Pc|ℓ

)
(62)

where (a) follows since D(P∥Q) is convex in the pair P and Q, (b) follows by symmetry, (c) follows
since the vector c1 has a product distribution given J∗ (because ℓ1 has a product distribution and
the noise is component-wise independent) and (d) follows since all the other components except the
first and second have the same distribution (Bern(1/2) ◦ Pc|ℓ). Recalling the definition of η(Pc|ℓ) in
Definition 1, we have

D
(
Bern(1/2− ϵ) ◦ Pc|ℓ∥Bern(1/2) ◦ Pc|ℓ

)
≤ η(Pc|ℓ)

(
d

(
1

2
− ϵ
∥∥∥1
2

))
≤ η(Pc|ℓ)ϵ

2 (63)

where d(·∥·) denotes the binary KL divergence, and the final inequality follows since d( 1
2
−x∥ 1

2)
x2 ≤ 1

for x < 1/4 and ϵ < 1/4 by assumption. Using the same reasoning for the second term of (62), and
using (63) in (61) we have

I(J∗; ct) ≤ 2tη(Pc|ℓ)ϵ
2

and therefore from (58) and (60) we get

sup
ℓ̃n

Reg(p, Pc|ℓ, ℓ̃
n) ≥ ϵ

n∑
t=1

(
1−

2(t− 1)η(Pc|ℓ)ϵ
2 + log 2

logm

)

≥ nϵ

(
1−

2nη(Pc|ℓ)ϵ
2 + log 2

logm

)
. (64)

Finally, the choice of ϵ =
√

log(m/4)
4nη(Pc|ℓ)

(which guarantees ϵ ≤ 1/4 for a large enough n) in (64) yields

sup
ℓ̃n

Reg(p, Pc|ℓ, ℓ̃
n) ≥

√
n log(m/4)

16η(Pc|ℓ)
(65)

as claimed.
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Remark 5 (Converse for the noiseless problem) From (60), and since J∗ → ℓt → ct, we
see that I(J∗; ct) ≤ I(J∗; ℓt). Following the single-letterization argument in (61) and using the
arguments leading up to (62) we can recover the the converse for the noiseless prediction with experts
problem. We note in particular that since (60) applies for any channel (not necessarily memoryless)
the outlined argument establishes a converse for the 1-bit/expert converse.

4 Discussion

This paper addresses the problem of prediction with expert advice in the presence of noisy feedback.
We propose a general achievability framework, analyze its regret (Theorem 1) and show a converse
result (Theorem 2) on the regret incurred by any strategy. We then specialize these general results to
canonical memoryless noise channels such as the BSC (4), BEC (5), additive noise channels (6)(7)(8),
and to the noise induced due to quantization (9), for which the achievability and converse bounds
match. The paper characterizes how the noise level affects the regret, and demonstrates that in
some cases, it is possible to achieve the same regret as with noiseless feedback.

A natural question that arises is whether we can derive minmax regret for an arbitrary mem-
oryless channel. Doing this would require us to relate the mean square error (as appears in the
achievability bound in Theorem 1) to the error in a multiple hypothesis test (as appears in the
proof of the converse in Theorem 2). An intriguing question to ask is which figure of merit of the
channel characterizes the factor by which the regret increases.

One of the limitations of our analysis is that it assumes that the noise channels are memoryless,
i.e., the corrupted feedback at each round is independent of the previous rounds. However, this
may not be realistic in some scenarios, where the noise could exhibit temporal correlations or
dependencies. For example, if the feedback is transmitted over a wireless channel, the channel state
could vary over time and affect the noise level. In such cases, our achievability scheme and our
converse result will need to be modified to account for the channel memory. This is an interesting
and challenging direction for future work, as it requires developing new techniques for learning from
noisy feedback with memory.

Another important direction for future work is to study quantization noise, where the rate
is strictly less than 1 bit per expert. This is relevant in applications where the communication
bandwidth is very limited or costly. Unlike the 1-bit/dimension randomized rounding presented
here, an optimal quantization scheme will likely need to be adaptive rather than memoryless. Such
adaptivity introduces memory to our framework, as it will have to exploit the temporal structure
of the losses to achieve better compression. It would be interesting to explore the trade-off between
the rate and the regret in this setting, and to design efficient and robust algorithms for learning
adaptively from quantized feedback as well as from other channels with memory.
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A Proof of Lemma 1

Define

Zt :=
m∑
j=1

exp
(
− α

t−1∑
i=1

ℓij
)
,

the normalizing term in pEWt , so that pEWtj = exp
(
−α

∑t−1
i=1 ℓij

)
/Zt. Then, we will consider logZt

to be the potential function and bound the difference in the potential function at each step. We
have Note that

logZt+1 − logZt = log

∑m
j=1 exp

(
− α

∑t
i=1 ℓij

)∑m
j=1 exp

(
− α

∑t−1
i=1 ℓij

)
= log

∑m
j=1 exp

(
− α

∑t−1
i=1 ℓij

)
exp(−αℓtj)∑m

j=1 exp
(
− α

∑t−1
i=1 ℓij

)
(a)
= log

 m∑
j=1

pEWtj exp(−αℓtj)


(b)

≤ log

 m∑
j=1

pEWtj
(
1− αℓtj + α2ℓ2tj

)
= log

1− α
m∑
j=1

pEWtj ℓtj + α2
m∑
j=1

ptjℓ
2
tj


(c)

≤ −α
m∑
j=1

pEWtj ℓtj + α2
m∑
j=1

pEWtj ℓ2tj

= −α⟨pEWt , ℓt⟩+ α2
m∑
j=1

pEWtj ℓ2tj (66)

where (a) follows by the definition of pEW in (12), (b) follows since ex ≤ 1 + x+ x2 for x ≤ 1 (and
−αℓtj ≤ 1), and (c) follows since log(1 + x) ≤ x for all x. Now, we observe that

logZn+1 = log

 m∑
j=1

exp
(
− α

n∑
t=1

ℓtj
)

≥ max
j∈[m]

log

(
exp

(
− α

n∑
t=1

ℓtj
))

= −α min
j∈[m]

n∑
t=1

ℓtj (67)

and that Z1 = m. Summing up (66) over all t ∈ [n], using (67) and rearranging yields the Lemma.
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B Achievability for uniform additive noise

We first show that the estimator ℓ̂tj in (20) is unbiased. Note that

E[ℓ̂t] = E

[(
−σ +

1

2

)
1{−σ ≤ ctj < −σ + 1}+ 1

2
1{−σ + 1 ≤ ctj < σ}

+

(
σ +

1

2

)
1{σ ≤ ctj ≤ σ + 1}

]

=

(
−σ +

1

2

)
P (−σ ≤ ctj < −σ + 1) +

1

2
P (−σ + 1 ≤ ctj < σ)

+

(
σ +

1

2

)
P (σ ≤ ctj < σ + 1) (68)

Since ctj = ℓtj + Ztj is distributed as Unif[−σ + ℓtj , σ + ℓtj ], we have

P (−σ ≤ ctj < −σ + 1) =
1− ℓtj
2σ

(69)

P (−σ + 1 ≤ ctj < σ) =
2σ − 1

2σ
(70)

P (σ ≤ ctj ≤ σ + 1) =
ℓtj
2σ

. (71)

Substituting (69), (70) and (71) in (68) yields

E[ℓ̂t] =
(−2σ + 1)(1− ℓtj)

4σ
+

2σ − 1

4σ
+

(2σ + 1)ℓtj
4σ

= ℓtj (72)

The MSE for this estimator satisfies

E[ℓ̂tj − ℓtj ]
2 = E[ℓ̂2tj ]− ℓ2tj

=

(
−σ +

1

2

)2

P (−σ ≤ ctj < −σ + 1) +
1

4
P (−σ + 1 ≤ ctj < σ)

+

(
σ +

1

2

)2

P (σ ≤ ctj < σ + 1)− ℓ2tj

(a)
=

(2σ − 1)2(1− ℓtj)

8σ
+

(2σ − 1)

8σ
+

(2σ + 1)2ℓtj
8σ

− ℓ2tj

=
σ

2
−
(
ℓtj −

1

2

)2

≤ σ (73)

where (a) uses (69), (70) and (71).

C Proof of Proposition 2

Following the argument in [Marsiglietti and Kostina, 2018], define

g(z) := f(0) exp(−2xf(0)).
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Then, f(0) = g(0) and
∫∞
0 (f(z) − g(z))dz =

∫∞
0 f(z)dz −

∫∞
0 g(z)dz = 1

2 − 1
2 = 0. Since f, g → 0

and z → ∞, this implies that the function f(z) − g(z) crosses the origin at least once in z > 0.
Moreover, any solution of f(z)−g(z) = 0 =⇒ f(z) = g(z) must satisfy also log f(z)− log g(z) = 0.
Since z 7→ log f(z) − log g(z) is a concave function (by virtue of f(z) being log-concave and g(z)
being log-affine), this implies that log f(z) − log g(z) crosses the origin at most once in z > 0.
Therefore, putting the two together implies that f(z) − g(z) = 0 occurs exactly at one point in
0 < z < ∞. Let us call this point t, so that f(t) = g(t). Therefore, for all z ≤ t, f(z) ≥ g(z) and
for all z > t, f(z) ≤ g(z). Putting these two together, we have

(f(z)− g(z))(t2 − z2) ≥ 0

which implies that ∫ ∞

0
z2f(z)dz ≤

∫ ∞

0
z2g(z)dz (74)

Since
∫∞
0 z2f(z)dz = σ2

2 and∫ ∞

0
z2g(z)dz =

∫ ∞

0
z2 exp(−2zf(0))dz =

1

8f(0)2

∫ ∞

0
z2 exp(−z)dz =

1

4f(0)2
,

(74) yields

f(0)2 ≤ 1

2σ2
(75)

which leads to the required Proposition.
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